2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 28(1); 2021
  • Article

Review

Journal of the Microelectronics and Packaging Society 2021;28(1):39-46. Published online: Mar, 18, 2022

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects

  • Kirak Son1, Sungtae Kim2, Cheol Kim2, Gahui Kim1, Young-Chang Joo2,†, Young-Bae Park1,†
    1School of Materials Science and Engineering, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do 36729, Korea 2Department of Materials Science and Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Corresponding author E-mail: ybpark@anu.ac.kr, ycjoo@snu.ac.kr
Abstract

Cu 배선(interconnect) 적용을 위한 다층박막의 적층 구조에 따른 최적 계면접착에너지(interfacial adhesion energy, Gc) 평가방법을 도출하기 위해, Ta, Cu 및 tetraethyl orthosilicate(TEOS-SiO2) 박막 계면의 정량적 계면접착에 너지를 double cantilever beam(DCB) 및 4-점 굽힘(4-point bending, 4-PB) 시험법을 통해 비교 평가하였다. 평가결과, Ta확산방지층이 적용된 시편(Cu/Ta, Cu/Ta/TEOS-SiO2)에서는 두 가지 평가방법 모두 반도체 전/후 공정에서 박리가 발 생하지 않는 산업체 통용 기준인 5 J/m2보다 높게 측정되었다. Ta/Cu 시편의 경우 DCB 시험에서만 5 J/m2보다 낮게 측정되었다. 또한, DCB시험 보다 4-PB시험으로 측정된 Gc가 더 높았다. 이는 계면파괴역학 이론에 따라 이종재료의 계면균열 선단에서 위상각의 증가로 인한 계면 거칠기 및 소성변형에 의한 에너지 손실이 증가 하는것에 기인한다. 4- PB시험결과, Ta/Cu 및 Cu/Ta계면은 5 J/m2 이상의 높은 계면접착에너지를 보이므로, 계면접착에너지 관점에서는 Ta는 Cu배선의 확산방지층(diffusion barrier layer) 및 피복층(capping layer)으로 적용 가능할 것으로 생각된다. 또한, 배선 집적공정 및 소자의 사용환경에서 열팽창 계수 차이에 의한 열응력 및 화학적-기계적 연마 (chemical mechanical polishing)에 의한 박리는 전단응력이 포함된 혼합모드의 영향이 크므로 4-PB 시험으로 측정된 Gc와 연관성이 더 클 것 으로 판단된다.
The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/ m2, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/ Cu sample, measured Gc value of the DCB test was lower than 5 J/m2. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/m2, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.

Keywords Cu interconnect, interfacial adhesion energy, 4-point bending test, double cantilever beam test, phase angle