2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 29(3); 2022
  • Article

Review

Journal of the Microelectronics and Packaging Society 2022;29(3):63-71. Published online: Nov, 21, 2022

Comparative Study of Interfacial Reaction and Drop Reliability of the Sn-3.0Ag-0.5Cu Solder Joints on Electroless Nickel Autocatalytic Gold (ENAG)

  • So-Yeon Jun1, Sang-Hyun Kwon1, Tae-Young Lee1, Deog-Gon Han2, Min-Su Kim1, Jung-Hwan Bang1,†, Sehoon Yoo1,†
    1Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Korea, 2MK Chem & Tech Co., Ltd, Ansan 15434, Korea
Corresponding author E-mail: yoos@kitech.re.kr, nova75@kitech.re.kr
Abstract

본 연구에서는 Sn-Ag-Cu (SAC)솔더와 electroless nickel autocatalytic gold (ENAG) 표면처리 간 계면반응 및 낙하충격 신뢰성을 연구하였다. ENAG 솔더 접합부의 특성은 다른 Ni계 표면처리인 electroless nickel immersion gold (ENIG)와 electroless nickel electroless palladium immersion gold (ENEPIG)와 비교 평가 하였다. SAC솔더와 Ni계 표면 처리 계면에서는 (Cu, Ni)6Sn5 intermetallic compound (IMC)가 형성되었다. IMC 두께는 SAC/ENAG와 SAC/ENEPIG 는 1.15 ㎛, 1.12 ㎛로 비슷하였고, SAC/ENIG는 IMC 두께가 2.99 ㎛로 SAC/ENAG보다 2배 정도 높았다. 또한 솔더 접합부의 IMC두께는 무전해 Ni(P) 도금액의 metal turnover (MTO)조건에 영향을 받는 다는 것을 알 수 있었고, MTO가 0에서 3으로 증가하면 IMC두께가 증가함을 알 수 있었다. 전단강도는 SAC/ENEPIG의 접합강도가 가장 높았고, SAC/ ENAG, SAC/ENIG 순이었다. 또한, MTO가 증가하면, 전단강도가 낮아짐을 알 수 있었다. 취성파괴도 SAC/ENEPIG가 세가지 접합부 중 가장 낮았으며, SAC/ENAG, SAC/ENIG 순이였고, 마찬가지로 MTO가 증가하면 취성파괴가 높아짐을 알 수 있었다. 낙하충격 시험에서도 0 MTO조건이 3 MTO조건보다 높은 평균파괴횟수를 갖는 것을 확인하였고, 평균파 괴횟수도 SAC/ENEPIG, SAC/ENAG, SAC/ENIG순으로 높았다. 낙하 충격 후 파단면을 관찰한 결과 크랙은 IMC와 Ni(P) 층 사이에서 진행되었다.
In this study, the interfacial reaction and drop impact reliability of Sn-Ag-Cu (SAC) solder and electroless nickel autocatalytic gold (ENAG) were studied. In addition, the solder joint properties with the ENAG surface finish was compared with electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). The IMC thickness of SAC/ENAG and SAC/ENEPIG were 1.15 and 1.12 ㎛, respectively, which were similar each other. The IMC thickness of the SAC/ENIG was 2.99 ㎛, which was about two times higher than that of SAC/ ENAG. Moreover, it was found that the IMC thickness of the solder joint was affected by the metal turnover (MTO) condition of the electroless Ni(P) plating solution, and it was found that the IMC thickness increased when the MTO increased from 0 to 3. The shear strength of SAC/ENEPIG was the highest, followed by SAC/ENAG and SAC/ENIG. It was found that when the MTO increased, the shear strength was lowered. In terms of brittle fracture, SAC/ENEPIG was the lowest among the three joints, followed by SAC/ENAG and SAC/ENIG. Likewise, it was found that as MTO increased, brittle fracture increased. In the drop impact test, it was confirmed that the 0 MTO condition had a higher average number of failures than the 3 MTO condition, and the average number of failures was also higher in the order of SAC/ENEIG, SAC/ENAG, and SAC/ENIG. As a result of observing the fracture surface after the drop impact, it was found that the fracture was between the IMC and the Ni(P) layer.

Keywords Sn-Ag-Cu solder; ENAG; ENIG; ENEPIG; Surface finish; intermetallic compound; shear strength; drop test