2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(1); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(1):90-94. Published online: May, 11, 2023

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition

  • JeongGeon-Joo1,2,*, KimTae-Yoo1,*, JungSeung-Boo2,†, KimKwang-Seok1,†
    1Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology, Jeonju 54853, Korea, 2School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea
Corresponding author E-mail: sbjung@skku.edu, ore21@kitech.re.kr
Abstract

Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200°C or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292°C, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200°C or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

Keywords Heating element, Carbon fiber, Electrophoretic deposition, Polyimide, Heater

REFERENCES
  • Q. Wu, W. Li, C. Liu, Y. Xu, G. Li, H. Zhang, J. Huang, and J. Miao, "Carbon fiber reinforced elastomeric thermal interface materials for spacecraft", Carbon, 187, 432-438 (2022) https://doi.org/10.1016/j.carbon.2021.11.039
  • J. Li, C. Zhu, Z. Zhao, P. Khalili, M. Clement, J. Tong, X. Liu, X. Yi, "Fire Properties of carbon fiber reinforced polymer improved by coating nonwoven flame retardant mat for aerospace application", J. Appl. Polym. Sci., 136(30), 47801 (2019)
  • J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao, C. Zhang, G. Du, R. Sun, and X. Zeng, "Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management", Compos. Sci. Technol., 234, 109948 (2023)
  • N. L. Rock and P. N. Kumta, "Synthesis and characterization of electrochemically active graphite-silicon-tin composite anodes for Li-ion applications", J. Power Sources, 164(2), 829-838 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.068
  • Z. Wu, J. Dong, X. Li, X. Zhao, W. Tan, C. Ji, and Q. Zhang, "Tough Polyimide composites synergistically reinforced by carbon nanofiber-grafted carbon fiber and rGO for improved heat dissipation and electromagnetic interference shielding", J. Mater. Sci. Technol., 149, 225-236 (2023) https://doi.org/10.1016/j.jmst.2022.11.039
  • A. Tugirumubano, H. Jeong, J. D. Kim, L. K. Kwac, and H. G. Kim, "Reliability evaluation of the performance of nonwoven carbon fabric for heating element applications", J. Mater. Res. Technol., 14, 2140-2149 (2021) https://doi.org/10.1016/j.jmrt.2021.07.111
  • N. Athanasopoulos, G. Koutsoukis, D. Vlachos, and V. Kostopoulos, "Temperature uniformity analysis and development of open lightweight composite molds using carbon fibers as heating elements", Compos. Pt. B-Eng., 50, 279-289 (2013) https://doi.org/10.1016/j.compositesb.2013.02.038
  • J. S. Jang, Y. W. Lim, D. H. Kim, D. Lee, W. T. Koo, H. Lee, B. S. Bae, and I. D. Kim, "Glass-fabric reinforced Ag nanowire/siloxane composite heater substrate: sub-10nm metal oxide nanosheet for sensitive flexible sensing platform", Small, 14(44), 1802260 (2018)
  • H. Kim, S. Yarlagadda, J. W. Gillespie, N. B. Shevchenko, and B. K. Fink, "A study on the introduction heating of carbon fiber reinforced thermoplastic composites", Adv. Compos. Mater., 11(1), 71-80 (2002) https://doi.org/10.1163/156855102753613309
  • A. Fosbury, S. Wang, Y. F. Pin, and D. D. L. Chung, "The interlaminar interface of a carbon fober Polymer-matrix composite as a resistance heating element", Compos. Pt. A-Appl. Sci. Manuf. 34(10), 993-940 (2003)
  • S. Lee, D. Jang, Y. S. Chung, and S. Lee, "Cost-effective and highly efficient surface heating elements using high thermal conductive carbon fibers", Compos. Pt. A-Appl. Sci. Manuf., 137, 105992 (2020)
  • B. Coto, P. Hallander, L. Mendizzabal, F. Pagano, H. Kling, R. Ortiz, J. Barriga, and L. Selegard, "Particle and rain erosion mechanisms on Ti/TiN multilayer PVD coatings for carbon fibre reinforced polymer substrates protection", Wear, 466-467, 203575 (2021)
  • H. Hatta, T. Aoki, Y. Kogo, and T. Yarii, "High-temperature oxidation behavior of SiC-coated carbon fiber-reinforced carbon matrix composites", Compos. Pt. A-Appl. Sci. Manuf., 30(4), 515-520 (1999) https://doi.org/10.1016/S1359-835X(98)00143-2
  • A. K. Roy, S. Schulze, M. Hietschold, and W. A. Goedel, "Oxidation protection of carbon fibers by coating with alumina and/or titania using atomic layer deposition", Carbon, 50(3), 761-770 (2012) https://doi.org/10.1016/j.carbon.2011.09.023
  • A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay, and M. S. P. Shaffer, "Electrophoretic deposition of carbon nanotubes", Carbon, 44(15), 3149-3160 (2006) https://doi.org/10.1016/j.carbon.2006.06.021
  • S. CandraKishore and A. Pandurangan, "Electroporetic deposition of cobalt catalyst layer over stainless steel for the high yield synthesis of carbon nanotubes", Appl. Surf. Sci., 258(20), 7936-7942 (2012) https://doi.org/10.1016/j.apsusc.2012.04.138
  • J. Tang, W. Li, and Z. Wang, "Facile synthesis of soluble, self-crosslinkable and crystalline polyimides with ultrahigh thermal/chemical resistance", Polymer, 268, 125717 (2023)
  • J. Chen, S. Yang, Z. Tao, A. Hu, and L. Fan, "Processing and Properties of Carbon Fiber-reinforced PMR Type Polyimide Composites", High Perform. Polym., 18(3), 377-396 (2006) https://doi.org/10.1177/0954008306063395
  • O. van der Biest, S. Put, G. Anne, J. Vleugels,"Electrophoretic deposition for coatings and free standing objects", J. Mater. Sci., 39, 779-785 (2004) https://doi.org/10.1023/B:JMSC.0000012905.62256.39
  • S. Hu, W. Li, H. Finklea, and X. Liu, "A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells", Adv. Colloid and Interface Sci., 276, 102102 (2020)