2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(1); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(1):79-89. Published online: May, 11, 2023

Low-iridium Doped Single-crystalline Hydrogenated Titanates (H2Ti3O7) with Large Exposed {100} Facets for Enhanced Oxygen Evolution Reaction under Acidic Conditions

  • JungSun Young, HanHyukSu
    Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
Corresponding author E-mail: hhan@konkuk.ac.kr
Abstract

Development of efficient and stable electrocatalysts for oxygen evolution reaction (OER) under acidic conditions is desirable goal for commercializing proton exchange membrane (PEM) water electroyzer. Herein, we report iridium-doped hydrogenated titanate (Ir–HTO) nanobelts as a promising catalyst with a low-Ir content for the acidic OER. Addition of low-Ir (~ 3.36 at%) into the single-crystalline HTO nanobelts with large exposed {100} facets significantly boost catalytic activity and stability for OER under acidic conditions. The Ir-HTO outperforms the commenrcial benchmark IrO2 catalyst; an overpotential for delivering 10 mA cm-2 current density was reduced to about 25% for the Ir-HTO. Moreover, the catalytic performance of Ir-HTO is positioned as the most efficient electrocatalyst for the acidic OER. An improved intrinsic catalytic activity and stability are also confirmed for the Ir-HTO through in-depth electrochemical characterizations. Therefore, our results suggest that low-Ir doped single-crystalline HTO nanobelts can be a promising catalyst for efficient and durable OER under acidic conditions.

Keywords Electrocatalyst, oxygen evolution reaction, hydrogenated titanate, low iridium

REFERENCES
  • M. A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, and J. Zhang, "Recent progresses in electrocatalysts for water electrolysis", Electrochemical Energy Reviews, 1, 483-530 (2018). https://doi.org/10.1007/s41918-018-0014-z
  • E. Fabbri, A. Habereder, K. W altar, R. Kotz, and T. J. Schmidt, "Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction", Catal. Sci. Technol., 4, 3800-3821 (2014). https://doi.org/10.1039/C4CY00669K
  • F. Gao, J. He, H. Wang, J. Lin, R. Chen, K. Yi, F. Huang, Z. Lin, and M. Wang, "Te-mediated electro-driven oxygen evolution reaction", Nano Research Energy, 1, e9120029 (2022).
  • L. Zhang, J. Liang, L. Yue, K. Dong, J. Li, D. Zhao, Z. Li, S. Sun, Y. Luo, Q. Liu, G. Cui, A. A. Alshehri, X. Guo, and X. Sun, "Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation", Nano Research Energy, 1, e9120028 (2022).
  • T. Fu, L. Sun, G. Li, Y. Xiang, Y. Tang, J. Sha, Y. Lei, Z. Xiong, Y. Si, and C. Guo, "Defect enriched N, S-codoped carbon sheets as an efficient electrocatalyst to oxygen reduction reaction", Journal of Alloys and Compounds, 935, 167923 (2023).
  • J. Liu, Z. P. Li, and B. H. Liu, "Highly Active CoFe Alloy Nanoparticles Encapsulated in N-doped Carbon Nanostructures for Oxygen Reduction Reaction in Both Alkaline and Acidic Media", Journal of Alloys and Compounds, 944, 169166 (2023).
  • D. Zhang, L. Zhang, C. He, Y. Huang, Q. Wu, J. Jiang, K. Liu, H. Wang, Y. Cai, and Q. Li, "Nanosheets/nanoparticlescomposed hierarchical manganese oxides enabled by molybdenum nitride rods for boosted oxygen reduction reaction electrocatalysis", Journal of Alloys and Compounds, 938, 168627 (2023).
  • K. Li, Y. Zhang, P. Wang, X. Long, L. Zheng, G. Liu, X. He, and J. Qiu, "Core-Shell ZIF-67@ ZIF-8-derived multi-dimensional cobalt-nitrogen doped hierarchical carbon nanomaterial for efficient oxygen reduction reaction", Journal of Alloys and Compounds, 903, 163701 (2022).
  • N. Bhuvanendran, M. G. Choi, D. Kim, and S. Y. Lee, "Improved trifunctional electrocatalytic performance of integrated Co3O4 spinel oxide morphologies with abundant oxygen vacancies for oxygen reduction and water-splitting reactions", Journal of Alloys and Compounds, 935, 168079 (2023).
  • R. Rohib, E. Lee, C. Kim, H. Lee, and G.-G. Park, "Highly durable core (Nb4N5)-shell (NbOx)-structured non-precious metal catalyst for oxygen reduction reaction in acidic media", Journal of Alloys and Compounds, 934, 167882 (2023).
  • L. Ai, Y. Wang, Y. Luo, Y. Tian, S. Yang, M. Chen, and J. Jiang, "Robust interfacial Ru-RuO2 heterostructures for highly efficient and ultrastable oxygen evolution reaction and overall water splitting in acidic media", Journal of Alloys and Compounds, 902, 163787 (2022).
  • X. Li, F. Duan, X. Lu, Y. Gang, W. Zheng, Y. Lin, L. Chen, Y. Dan, and X. Cheng, "Surface engineering of flower-like Co-NC on carbon paper for improved overall water splitting", Journal of Alloys and Compounds, 935, 168128 (2023).
  • Y. Yuan, Y. Liu, C. Li, S. Feng, Q. Liu, and J. Huo, "Hierarchically porous N-doped carbon nanosheet networks with ultrafine encapsulated Fe3C and Fe-Nx for oxygen reduction reaction in alkaline and acidic media", Journal of Alloys and Compounds, 920, 165821 (2022).
  • L.-H. Yang, R. Luo, X.-J. Wen, Z.-T. Liu, Z.-H. Fei, and L. Hu, "Nanoconfinement effects of Ni@ CNT for efficient electrocatalytic oxygen reduction and evolution reaction", Journal of Alloys and Compounds, 897, 163206 (2022).
  • D.-E. Lee, S. Moru, W.-K. Jo, and S. Tonda, "Metal-and nonmetal-incorporated vitamin B12 on graphene as a bio-derived electrocatalyst for the high-performance oxygen reduction reaction in acidic media", Journal of Alloys and Compounds, 912, 165118 (2022).
  • C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan, and C. Yang, "Science, Exceptional performance of hierarchical Ni-Fe oxyhydroxide@ NiFe alloy nanowire array electrocatalysts for large current density water splitting", Energy Environ. Sci., 13, 86-95 (2020). https://doi.org/10.1039/c9ee02388g
  • J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler, and W. Schuhmann, "Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution", Advanced Energy Materials, 6(6), 1502313 (2016).
  • J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. De La Mata, J. Arbiol, M. Muhler, B. R. Cuenya, and W. Schuhmann, "Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution", Advanced Energy Materials, 7(17), 1700381, (2017).
  • X. Liang, L. Shi, R. Cao, G. Wan, W. Yan, H. Chen, Y. Liu, and X. Zou, "Perovskite-Type Solid Solution Nano-Electrocatalysts Enable Simultaneously Enhanced Activity and Stability for Oxygen Evolution", Adv. Mater., 32(34), 2001430 (2020).
  • X. Liang, L. Shi, Y. Liu, H. Chen, R. Si, W. Yan, Q. Zhang, G.-D. Li, L. Yang, and X. Zou, "Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions", Angew. Chem. Int. Ed., 58(23), 7497-7877 (2019). https://doi.org/10.1002/anie.201905757
  • H. Chen, L. Shi, X. Liang, L. Wang, T. Asefa, and X. Zou, "Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts", Angew. Chem. Int. Ed., 59(44), 19654-19658 (2020). https://doi.org/10.1002/anie.202006756
  • A. E.-Barrio, E. C.-Martinez, M. Zarrabeitia, M. A. M.- Marquez, M. C.-Cabanas, and T. J. P. C. C. P. Rojo, "Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries", Phys. Chem. Chem. Phys., 17, 6988-6994 (2015). https://doi.org/10.1039/c4cp03345k
  • E. Morgado Jr, P. Jardim, B. A. Marinkovic, F. C. Rizzo, M. A. De Abreu, J. L. Zotin, and A. S. Araujo, "Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials", Nanotechnology, 18, 495710 (2007).
  • S. Papp, L. Korosi, V. Meynen, P. Cool, E. F. Vansant, and I. Dekany, "The influence of temperature on the structural behaviour of sodium tri-and hexa-titanates and their protonated forms", Journal of Solid State Chemistry, 178(5), 1614-1619 (2005). https://doi.org/10.1016/j.jssc.2005.03.001
  • S. Zhang, Q. Chen, and L.-M. Peng, "Structure and formation of H2Ti3O7 nanotubes in an alkali environment", Phys. Rev. B, 71, 014104 (2005).
  • K. R. Zhu, Y. Yuan, M. S. Zhang, J. M. Hong, Y. Deng, and Z. Yin, "Structural transformation from NaHTi3O7 nanotube to Na2Ti6O13 nanorod", Solid State Communications, 144(10-11), 450-453 (2007). https://doi.org/10.1016/j.ssc.2007.09.015
  • G.-N. Zhu, C.-X. Wang, and Y.-Y. Xia, "Structural transformation of layered hydrogen trititanate (H2Ti3O7) to TiO2 (B) and its electrochemical profile for lithium-ion intercalation", Journal of Power Sources, 196(5), 2848-2853 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.023
  • Q. Wang, L. Shen, T. Xue, G. Cheng, C. Z. Huang, H. J. Fan, and Y. P. Feng, "Single-Crystalline TiO2(B) Nanobelts with Unusual Large Exposed {100} Facets and Enhanced Li-Storage Capacity", Advanced Functional Materials, 31(2), 2002187 (2021).
  • H. Tang, Z. Zhou, C. C. Bowland, and H. A. Sodano, "Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites", Nano Energy, 17, 302-307 (2015). https://doi.org/10.1016/j.nanoen.2015.09.002
  • Q. Chen, G. H. Du, S. Zhang, and L.-M. Peng, "The structure of trititanate nanotubes", Acta Crystallogr B., 58, 587-593 (2002). https://doi.org/10.1107/S0108768102009084
  • S. Anantharaj, H. Sugime, and S. Noda, "Why shouldn't double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?", Journal of Electroanalytical Chemistry, 903, 115842 (2021).
  • A. Moysiadou, S. Lee, C.-S. Hsu, H. M. Chen, and X. Hu, "Supporting Information Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a RateDetermining Step", J. Am. Chem. Soc., 142, 11901-11914 (2020). https://doi.org/10.1021/jacs.0c04867
  • F. Tang, S. Guo, Y. Sun, X. Lin, J. Qiu, and A. Cao, "Facile Synthesis of Fe-Doped CoO Nanotubes as High-Efficient Electrocatalysts for Oxygen Evolution Reaction", Small Structures, 3(4), 2100211 (2022).
  • N. Wen, Y. Xia, H. Wang, D. Zhang, H. Wang, X. Wang, X. Jiao, and D. Chen, "Large-Scale Synthesis of Spinel NixMn3-xO4 Solid Solution Immobilized with Iridium Single Atoms for Efficient Alkaline Seawater Electrolysis", Advanced Science, 9(16), 2200529 (2022).
  • X. Kong, C. Zeng, X. Wang, J. Huang, C. Li, J. Fei, J. Li, and Q. Feng, "Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide", Scientific Reports, 6, 29049 (2016).
  • C. Xiao, "Non-Precious Metal-Based Mesoporous Electrocatalysts for Enhanced Oxygen Evolution Reactions", in, UNSW Sydney, (2015).
  • E. Enkhtuvshin, K. M. Kim, Y.-K. Kim, S. Mihn, S. J. Kim, S. Y. Jung, N. T. T. Thao, G. Ali, M. Akbar, K. Y. Chung, K. H. Chae, S. Kang, T. W. Lee, H. G. Kim, S. Choi, and H. Han, "Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis", J. Mater. Chem. A, 9, 27332-27346 (2021). https://doi.org/10.1039/D1TA07126B
  • Y.-R. Hong, K. M. Kim, J. H. Ryu, S. Mhin, J. Kim, G. Ali, K. Y. Chung, S. Kang, and H. Han, "Dual-phase engineering of nickel boride-hydroxide nanoparticles toward high-performance water oxidation electrocatalysts", Advanced Functional Materials, 30(38), 2004330 (2020).
  • V. W. Y. Tam and C. M. Tam, "Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach", Journal of Materials Science, 42, 3592-3602 (2007). https://doi.org/10.1007/s10853-006-0379-y
  • D. Weber, L. M. Schoop, D. Wurmbrand, S. Laha, F. Podjaski, V. Duppel, K. Muller, U. Starke, and B. V. Lotsch, "IrOOH nanosheets as acid stable electrocatalysts for the oxygen evolution reaction", J. Mater. Chem. A, 6, 21558-21566 (2018). https://doi.org/10.1039/C8TA07950A
  • J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.-C. Wang, and S. Guo, "Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis", Adv. Mater., 29(47), 1703798 (2017).
  • F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang, J. Zhou, C. Yang, M. Luo, Y. Yang, Y. Li, P. Gao, and S. Guo, "Iridium-tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts", ACS Cent. Sci., 4, 1244-1252 (2018). https://doi.org/10.1021/acscentsci.8b00426
  • J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, and S.-Z. Qiao, "Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation", J. Am. Chem. Soc., 143, 5201-5211 (2021). https://doi.org/10.1021/jacs.1c01525
  • A. L. Strickler, D. Higgins, and T. F. Jaramillo, "Crystalline strontium iridate particle catalysts for enhanced oxygen evolution in acid", ACS Appl. Energy Mater., 2, 5490-5498 (2019). https://doi.org/10.1021/acsaem.9b00658
  • L. Yang, H. Chen, L. Shi, X. Li, X. Chu, W. Chen, N. Li, and X. Zou, "Enhanced Iridium mass activity of 6H-phase, Irbased perovskite with nonprecious incorporation for acidic oxygen evolution electrocatalysis", ACS Appl. Mater. Interfaces, 11, 42006-42013 (2019). https://doi.org/10.1021/acsami.9b11287
  • J. Shan, T. Ling, K. Davey, Y. Zheng, and S.-Z. Qiao, "Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments", Adv. Mater., 31(17), 1900510 (2019).