Search
- Past Issues
- e-Submission
-
KCI Accredited Journals KCI 등재지
KCI Impact Factor 0.54
Editorial Office
- +82-2-538-0962
- +82-2-538-0963
- kmeps@kmeps.or.kr
- http://kmeps.or.kr/
KCI Accredited Journals KCI 등재지
KCI Impact Factor 0.54
Journal of the Microelectronics and Packaging Society 2023;30(1):55-62. Published online: May, 11, 2023
DOI : dx.doi.org/10.6117/kmeps.2023.30.1.055
In this study, Sn-3.0Ag-0.5Cu (wt.%, SAC305) solder dipping process was performed between Ni-foam skeleton with different pore per inch (PPI) to fabricate Ni-foam/SAC305 composite solder, and then applied to the transient liquid phase (TLP) bonding process to evaluate the microstructure and mechanical properties of the bonded joint. The Ni-foam/SAC305 composite solder preform consisted of Ni-foam and SAC305, and an intermetallic compound (IMC) having a (Ni,Cu)3Sn4 composition was formed at the Ni-foam interface. During TLP bonding process, the IMC at the Ni-foam interface was converted to (Ni,Cu)3Sn4+Au, and as the bonding time increased, the Ni-foam and SAC305 continuously reacted, and the bonded joint was converted into an IMC. And it was confirmed that the 130 PPI Ni-foam/ SAC305 composite solder joint was converted into an IMC at the fastest rate. As a result of performing a shear test to confirm the effect of Ni-foam on mechanical properties, solder joints under all conditions exhibited excellent mechanical properties of 50 MPa or more in the early stages of the TLP bonding process, and the shear strength tends to increase as the bonding time increases.
Keywords Sn-3.0Ag-0.5Cu solder, Nickel foam, Intermetallic compound, Mechanical properties, Transient liquid phase bonding