2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(2); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(2):13-20. Published online: Aug, 18, 2023

Applications of Self-assembled Monolayer Technologies in MEMS Fabrication

  • Woo-Jin Lee1 , Seung-Min Lee1 , and Seung-Kyun Kang1,2,3†
    1 Department of Materials Science and Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea, 2 Research Institute of Advanced Materials, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea, 3 Soft foundry institute, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Corresponding author E-mail: kskg7227@snu.ac.kr
Abstract

The process of microelectromechanical system (MEMS) fabrication involves surface treatment to impart functionality to the device. Such surface treatment method is the self-assembled monolayer (SAM) technique, which modifies and functionalizes the surface of MEMS components with organic molecule monolayer, possessing a precisely controllable strength that depends on immersion time and solution concentration. These monolayers spontaneously adsorb on polymeric substrates or metal/ceramic components offering high precision at the nanoscale and modifying surface properties. SAM technology has been utilized in various fields, such as tribological property control, mass-production lithography, and ultrasensitive organic/biomolecular sensor applications. This paper provides an overview of the development and application of SAM technology in various fields.

Keywords Micro electro mechanical system, Self-assembled monolayer, Sensor, Surface treatment, Nano patterning

REFERENCES
  • A. Ulman, "Formation and structure of self-assembled monolayers", Chem. Rev., 96(4), 1533-1554 (1996)
  • F. Schreiber, "Structure and growth of self-assembling monolayers", Progress in Surface Science, 65(5-8), 151-257 (2000)
  • D. K. Schwartz, "Mechanisms and kinetics of self-assembled monolayer formation", Annual Review of Physical Chemistry, 52, 107-137 (2001)
  • W. C. Bigelow, D. L. Pickett, and W. A. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids", Journal of Colloid Science, 1(6), 513-538 (1946)
  • C. D. Bain and G. M. Whitesides, "Modeling organic surfaces with self-assembled monolayers", Angewandte Chemie, 101(4), 522-528 (1989)
  • C. E. D. Chidsey, and Dominic N. Loiacono, "Chemical functionality in self-assembled monolayers: structural and electrochemical properties", Langmuir, 6(3), 682-691 (1990)
  • D. Mobius, "Designed monolayer assemblies", Berichte der Bunsengesellschaft fur physikalische Chemie, 82(9), 848-858 (1978)
  • H. Haidara and S. Noirot, "In situ study of simultaneous adsorption of surfactant at model solid-liquid and liquid-liquid interfaces using the two-liquid contact angle method", The Journal of Adhesion, 57(1-4), 191-202 (1996)
  • E. P. Enriquez, "Nano-Engineering of Molecular Films by Self-Assembly and Langmuir-Blodgett Techniques", Kimika, 14(1), 1-9 (1998)
  • C. N. Sayre and D. M. Collard, "Electrooxidative deposition of polypyrrole and polyaniline on self-assembled monolayer modified electrodes", Langmuir, 13(4), 714-722 (1997)
  • J.-N. Chazalviel and P. Allongue, "On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer", Journal of the American Chemical Society, 133(4), 762-764 (2011)
  • P. T. Hammond and G. M. Whitesides, "Formation of polymer microstructures by selective deposition of polyion multilayers using patterned self-assembled monolayers as a template", Macromolecules, 28(22), 7569-7571 (1995)
  • S. Kidambi, C. Chan, and I. Lee, "Selective depositions on polyelectrolyte multilayers: Self-assembled monolayers of mdPEG acid as molecular template", Journal of the American Chemical Society, 126(14), 4697-4703 (2004)
  • H. Cheng, and Y. Hu, "Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication", Advances in colloid and interface science, 171, 53-65 (2012)
  • M. Akbulut, A. R. G. Alig, and J. Israelachvili, "Triboelectrification between smooth metal surfaces coated with self-assembled monolayers (SAMs)", The Journal of Physical Chemistry B, 110(44), 22271-22278 (2006)
  • S.-L. Ren, S.-R. Yang, J.-Q. Wang, W.-M. Liu, and Y.-P. Zhao, "Preparation and tribological studies of stearic acid self-assembled monolayers on polymer-coated silicon surface", Chemistry of materials, 16(3), 428-434 (2004)
  • S. Watson, M. Nie, L. Wang, and K. Stokes, "Challenges and developments of self-assembled monolayers and polymer brushes as a green lubrication solution for tribological applications", RSC Advances, 5(109), 89698-89730 (2015)
  • I. Luzinov, D. Julthongpiput, A. L.-Vinson, T. Cregger, M. D. Foster, and V. V. Tsukruk, "Epoxy-terminated self-assembled monolayers: molecular glues for polymer layers", Langmuir, 16(2), 504-516 (2000)
  • K. D. Schierbaum, T. Weiss, E. U. van Veizen, J. F. Engbersen, D. N. Reinhoudt, and W. Gopel, "Molecular recognition by self-assembled monolayers of cavitand receptors", Science, 265(5177), 1413-1415 (1994)
  • C. Boozer, J. Ladd, S. Chen, Q. Yu, J. Homola, and S. Jiang, "DNA directed protein immobilization on mixed ssDNA/oligo (ethylene glycol) self-assembled monolayers for sensitive biosensors", Analytical chemistry, 76(23), 6967-6972 (2004)
  • N. A. S. Omar, Y. W. Fen, J. Abdullah, Y. M. Kamil, W. M. E. M. M. Daniyal, A. R. Sadrolhosseini, and M. A. Mahdi, "Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor", Scientific Reports, 10(1), 2374 (2020)
  • X. Jiang, and S. F. Bent, "Area-selective ALD with soft lithographic methods: using self-assembled monolayers to direct film deposition", The Journal of Physical Chemistry C, 113(41), 17613-17625 (2009)
  • E. Farm, M. Vehkamaki, M. Ritala, and M. Leskela, "Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer", Semiconductor Science and Technology, 27(7), 074004 (2012)
  • N. Phung, M. Verheijen, A. Todinova, K. Datta, M. Verhage, A. A.-Ashouri, H. Kobler, X. Li, A. Abate, S. Albrecht, and M. Creatore, "Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in pin Perovskite Solar Cells", ACS Applied Materials & Interfaces, 14(1), 2166-2176 (2021)
  • C. Nicosia, and J. Huskens, "Reactive self-assembled monolayers: from surface functionalization to gradient formation", Materials horizons, 1(1), 32-45 (2014)
  • J. J. Gooding, "Advances in interfacial design for electrochemical biosensors and sensors: aryl diazonium salts for modifying carbon and metal electrodes", Electroanalysis: An International Journal Devoted to Electroanalysis, Sensors and Bioelectronic Devices, 20(6), 573-582 (2008)
  • D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi, and D. Vuillaume, "Self assembled monolayers on silicon for molecular electronics", Analytica Chimica Acta, 568(1-2), 84-108 (2006)
  • Y. Horii, M. Ikawa, K. Sakaguchi, M. Chikamatsu, Y. Yoshida, R. Azumi, H. Mogi, M. Kitagawa, H. Konishi, and K. Yase, "Investigation of self-assembled monolayer treatment on SiO2 gate insulator of poly (3-hexylthiophene) thinfilm transistors", Thin Solid Films, 518(2), 642-646 (2009)
  • S. Ramadan, Y. Zhang, D. K. H. Tsang, O. Shaforost, L. Xu, R. Bower, I. E. Dunlop, P. K. Petrov, and N. Klein, "Enhancing structural properties and performance of graphene-based devices using self-assembled HMDS monolayers", ACS omega, 6(7), 4767-4775 (2021)
  • S. T. Patton, K. C. Eapen, J. S. Zabinski, J. H. Sanders, and A. A. Voevodin, "Lubrication of microelectromechanical systems radio frequency switch contacts using self-assembled monolayers", Journal of Applied Physics, 102(2), 024903 (2007)
  • J. Pu, Y. Mo, S. Wan, and L. Wang, "Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for MEMS applications", Chemical Communications, 50(4), 469-471 (2014)
  • S. A. Henck, "Lubrication of digital micromirrordevicesTM", Tribology Letters, 3(3), 239-247 (1997)
  • Sung, I-H. and D-E. Kim. "Surface damage characteristics of self-assembled monolayers of alkanethiols on metal surfaces", Tribology Letters, 17, 835-844 (2004)
  • C. S. Tan, D. F. Lim, S. G. Singh, S. K. Goulet, and M. Bergkvist, "Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol", Applied Physics Letters, 95(19), 192108 (2009)
  • D. F. Lim, S. K. Goulet, M. Bergkvist, J. Wei, K. C. Leong, and C. S. Tan, "Enhancing Cu-Cu diffusion bonding at low temperature via application of self-assembled monolayer passivation", Journal of the Electrochemical Society, 158(10), H1057 (2011)
  • M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, "Effects of chemical bonding on heat transport across interfaces", Nature Materials, 11, 502-506 (2012)
  • S. Park, J. Jang, H. Kim, D. I. Park, K. Kim, and H. J. Yoon, "Thermal conductance in single molecules and self-assembled monolayers: Physicochemical insights, progress, and challenges", Journal of Materials Chemistry A, 8(38), 19746- 19767 (2020)
  • K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, "Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer", ACS Nano, 10(8), 7792-7798 (2016)
  • K. Fujimaru, T. Ono, R. Nagai, and H. Matsumura, "Nanometer pattern-mask fabricated by conventional photolithography", Japanese Journal of Applied Physics, 36(12S), 7786 (1997)
  • T. Schmaltz, G. Sforazzini, T. Reichert, and H. Frauenrath, "Self-assembled monolayers as patterning tool for organic electronic devices", Advanced Materials, 29(18), 1605286 (2017)
  • R. J. Hofmann, M. Vlatkovic, and F. Wiesbrock, "Fifty years of hydrosilylation in polymer science: A review of current trends of low-cost transition-metal and metal-free catalysts, non-thermally triggered hydrosilylation reactions, and industrial applications", Polymers, 9(10), 534 (2017)
  • R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ""Dip-Pen" Nanolithography", Science, 283(5402), 661-663 (1999)
  • S. Hong, J. Zhu, and C. A. Mirkin. "Multiple ink nanolithography: toward a multiple-pen nano-plotter", Science, 286(5439), 523-525 (1999)
  • S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, "Sensor functionalities in self-assembled monolayers", Advanced Materials, 12(18), 1315-1328 (2000)
  • D. Samanta and A. Sarkar, "Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications", Chemical Society Reviews, 40(5), 2567-2592 (2011)
  • D. Mandler and S. Kraus-Ophir, "Self-assembled monolayers (SAMs) for electrochemical sensing", Journal of Solid State Electrochemistry, 15, 1535-1558 (2011)
  • L. Basabe-Desmonts, J. Beld, R. S. Zimmerman, J. Hernando, P. Mela, M. F. G. Parajo, N. F. van Hulst, A. van den Berg, D. N. Reinhoudt, and M. Crego-Calama, "A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass", Journal of the American Chemical Society, 126(23), 7293-7299 (2004)
  • M. Li, K. Xie, G. Wang, J. Zheng, Y. Cao, F. Wei, H. Tu, and J. Tang, "A formaldehyde sensor based on self-assembled monolayers of oxidized thiophene derivatives", Langmuir, 37(19), 5916-5922 (2021)
  • W.-I. Lee, A. Subramanian, S. Mueller, K. Levon, C.-Y. Nam, and M. H. Rafailovich, "Potentiometric Biosensors Based on Molecular-Imprinted Self-Assembled Monolayer Films for Rapid Detection of Influenza A Virus and SARS-CoV-2 Spike Protein", ACS Applied Nano Materials, 5(4), 5045-5055 (2022)
  • F. Schreiber, "Self-assembled monolayers: from 'simple' model systems to biofunctionalized interfaces", Journal of Physics: Condensed Matter, 16(28), R881 (2004)
  • S. D. Kelly, K. M. Kemner, G. E. Fryxell, J. Liu, S. V. Mattigod, and K. F. Ferris, "X-ray-absorption fine-structure spectroscopy study of the interactions between contaminant tetrahedral anions and self-assembled monolayers on mesoporous supports", The Journal of Physical Chemistry B, 105(27), 6337-6346 (2001)
  • E. Jeoung, J. B. Carroll, and V. M. Rotello, "Surface modification via 'lock and key' specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces", Chemical Communications, 14, 1510-1511 (2002)