2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(2); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(2):21-32. Published online: Aug, 18, 2023

Review on Oxidation Resistance Technology for Copper Nanowire Transparent Electrodes

  • Gieop Lee1 , Hokyun Rho2 , Hyung Gu Kim3 , and Jun-Seok Ha1,2,†
    1 Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea, 2 Energy Convergence Core Facility, Chonnam National University, Gwangju 61186, Republic of Korea, 3 Photonic Semiconductor Research Center, Korea Photonics Technology Institute, Buk-gu, Gwangju 61007, Republic of Korea
Corresponding author E-mail: jsha@jnu.ac.kr
Abstract

CuNWs(Copper nanowires) are attracting attention as a transparent electrode material because of their excellent electrical conductivity, high mechanical flexibility, and cost-effectiveness. However, since copper nanowires are easily oxidized, there is a disadvantage that properties of the transparent electrode may be deteriorated due to this, and researches are being conducted to improve this. Accordingly, in this review, various methods and studies to prevent oxidation and improve stability of copper nanowire transparent electrodes by using coating materials such as carbon-based materials, metals, and conductive polymers are introduced. Through this, we intend to provide solutions to solve the problem of development and oxidation of copper nanowire-based technology

Keywords Cu Nanowire, Transparent Electrode, Oxidation Resistance

REFERENCES
  • X. Li, S. Yu, L. Zhao, M. Wu, and H. Dong, "Hybrid PEDOT:PSS to obtain high-performance Ag NW-based flexible transparent electrodes for transparent heaters", J. Mater. Sci. Mater. Electron., 31, 8106-8115 (2020).
  • Y. Huang, Y. Liu, K. Youssef, K. Tong, Y. Tian, Q. Pei, "A Solution Processed Flexible Nanocomposite Substrate with Efficient Light Extraction via Periodic Wrinkles for White Organic Light-Emitting Diodes", Adv. Opt. Mater., 6, 1-9 (2018).
  • S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, "Metal nanowire networks: The next generation of transparent conductors", Adv. Mater., 26, 6670-6687 (2014).
  • S. Yu, W. Zhang, L. Li, H. Dong, D. Xu, Y. Jin, "Structural, electrical, photoluminescence and optical properties of n-type conducting, phosphorus-doped ZnO thin films prepared by pulsed laser deposition", Appl. Surf. Sci., 298, 44-49 (2014).
  • S. K. Hau, H. L. Yip, J. Zou, and A. K. Y. Jen, "Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes", Org. Electron., 10, 1401-1407 (2009).
  • H. Wang, C. Wu, Y. Huang, F. Sun, N. Lin, A. M. Soomro, Z. Zhong, X. Yang, X. Chen, J. Kang, and D. Cai, "One-Pot Synthesis of Superfine Core-Shell Cu@metal Nanowires for Highly Tenacious Transparent LED Dimmer", ACS Appl. Mater. Interfaces, 8, 28709-28717 (2016).
  • S. Walia, R. Gupta, K. D. M. Rao, and G. U. Kulkarni, "Transparent Pd Wire Network-Based Areal Hydrogen Sensor with Inherent Joule Heater", ACS Appl. Mater. Interfaces, 8, 23419-23424 (2016).
  • S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, "Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios", ACS Nano, 3, 1767-1774 (2009).
  • D. S. Hecht, L. Hu, and G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures", Adv. Mater., 23, 1482-1513 (2011).
  • H. Park, S. Chang, X. Zhou, J. Kong, T. Palacios, and S. Gradecak, "Flexible graphene electrode-based organic photovoltaics with record-high efficiency", Nano Lett., 14, 5148-5154 (2014).
  • P. Kumar, K. L. Woon, W. S. Wong, M. S. Mohamed Saheed, and Z. A. Burhanudin, "Hybrid film of single-layer graphene and carbon nanotube as transparent conductive electrode for organic light emitting diode", Synth. Met., 257, 116186 (2019).
  • Y. G. Seol, T. Q. Trung, O. J. Yoon, I. Y. Sohn, and N. E. Lee, "Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes", J. Mater. Chem., 22, 23759-23766 (2012).
  • Z. Guo, C. Sun, J. Zhao, Z. Cai, and F. Ge, "Low-Voltage Electrical Heater Based on One-Step Fabrication of Conductive Cu Nanowire Networks for Application in Wearable Devices", Adv. Mater. Interfaces, 8, 1-11 (2021).
  • H. Zhang, S. Wang, Y. Tian, J. Wen, C. Hang, Z. Zheng, Y. Huang, S. Ding, and C. Wang, "High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes", Nano Mater. Sci., 2, 164-171 (2020).
  • N. Liu, A. Chortos, T. Lei, L. Jin, T. R. Kim, W.-G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair, and Z. Bao, "Ultratransparent and stretchable graphene electrodes", Sci. Adv., 3, 1700159 (2017).
  • J. Bang, S. Coskun, K. R. Pyun, D. Doganay, S. Tunca, S. Koylan, D. Kim, H. E. Unalan, and S. H. Ko, "Advances in protective layer-coating on metal nanowires with enhanced stability and their applications", Appl. Mater. Today, 22, 100909 (2021).
  • L. Hu, H. Wu, and Y. Cui, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes", MRS Bull., 36, 760-765 (2011).
  • I. E. Stewart, A. R. Rathmell, L. Yan, S. Ye, P. F. Flowers, W. Youbc and B. J. Wiley, "Solution-processed copper-nickel nanowire anodes for organic solar cells", Nanoscale, 6, 5980-5988 (2014).
  • S. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao, and K. Suganuma, "Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air", Phys. Chem. Chem. Phys., 17, 31110-31116 (2015).
  • H. Xu, H. Wang, C. Wu, N. Lin, A. M. Soomro, H. Guo, C. Liu, X. Yang, Y. Wu, D. Cai, and J. Y. Kang, "Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode", Nanoscale, 7, 10613-10621 (2015).
  • A. Aliprandi, T. Moreira, C. Anichini, M.-A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samori, "Hybrid Copper-Nanowire-Reduced-Graphene-Oxide Coatings: A "Green Solution", Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics", Adv. Mater., 29, 1-6 (2017).
  • Z. Niu, F. Cui, Y. Yu, N. Becknell, Y. Sun, G. Khanarian, D. Kim, L. Dou, A. Dehestani, K. Schierle-Arndt, and P. Yang, "Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors", J. Am. Chem. Soc., 139, 7348-7354 (2017).
  • Y. Jin, L. Li, Y. Cheng, L. Kong, Q. Pei, and F. Xiao, "Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer Sol-Gel transition", Adv. Funct. Mater., 25, 1581-1587 (2015).
  • M. R. Abidian, D. H. Kim, and D. C. Martin, "Conducting-polymer nanotubes for controlled drug release", Adv. Mater., 18, 405-409 (2006).
  • L. Xu, Y. Yang, Z. W. Hu, and S. H. Yu, "Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid", ACS Nano, 10, 3823-3834 (2016).
  • Z. Liu, and Y. Bando, "Oxidation behaviour of copper nanorods", Chem. Phys. Lett., 378, 85-88 (2003).
  • X. Zeng, P. Pan, H. Qi, Z. He, and J. Su, "Preparation of copper nanowires and thermal oxidation behaviour in dry oxygen", Surf. Innov., 10, 200-208 (2022).
  • P. C. Hsu, H. Wu, T. J. Carney, M. T. McDowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Y. Cui, "Passivation coating on electrospun copper nanofibers for stable transparent electrodes", ACS Nano, 6, 5150-5156 (2012).
  • A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, "Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks", Nano Lett., 12, 3193-3199 (2012).
  • I. Hong, S. Lee, D. Kim, H. Cho, Y. Roh, H. An, S. Hong, and S. H. Ko, "Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications", Nanotechnology, 30, 074001 (2019).
  • S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, "Oxidation Resistance of Graphene- Coated Cu and Cu / Ni Alloy", ACS Nano, 5, 1321-1327 (2011).
  • A. Manikandan, L. Lee, Y.-C. Wang, C.-W. Chen, Y.-Z. Chen, H. Medina, J.-Y. Tseng, Z. M. Wang, and Y.-L. Chueh, "Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions", J. Mater. Chem. A, 5, 13320-13328 (2017).
  • X. Zhang, J. Wu, H. Liu, J. Wang, X. Zhao, and Z. Xie, "Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide-Assisted silver nanowire transparent electrode", Org. Electron., 50, 255-263 (2017).
  • Z. Zhu, T. Mankowski, K. Balakrishnan, A. S. Shikoh, F. Touati, M. A. Benammar, M. Mansuripur, and C. M. Falco, "Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability", ACS Appl. Mater. Interfaces, 7, 16223-16230 (2015).
  • D. M. Ye, G.-Z. Li, G.-G. Wang, Z.-Q. Lin, H.-L. Zhou, M. Han, Y.-L. Liu, and J.-C. Han, "One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability", Appl. Surf. Sci., 467-468, 158-167 (2019).
  • X. Xu, D. Yi, Z. Wang, J. Yu, Z. Zhang, R. Qiao, Z. Sun, Z. Hu, P. Gao, H. Peng, Z. Liu, D. Yu, E. Wang, Y. Jiang, F. Ding, and K. Liu, "Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating", Adv. Mater., 30, 1-7 (2018).
  • J. Wang, Z. Zhang, S. Wang, R. Zhang, Y. Guo, G. Cheng, Y. Gu, K. Liu, and K. Chen, "Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode", Nano Energy, 71, 104638 (2020).
  • I. E. Stewart, S. Ye, Z. Chen, P. F. Flowers, and B. J. Wiley, "Synthesis of Cu-Ag, Cu-Au, and Cu-Pt Core-Shell Nanowires and Their Use in Transparent Conducting Films", Chem. Mater., 27, 7788-7794 (2015).
  • M. J. Catenacci, C. Reyes, M. A. Cruz, and B. J. Wiley, "Stretchable Conductive Composites from Cu-Ag Nanowire Felt", ACS Nano, 12, 3689-3698 (2018).
  • D. H. Jiang, P.-C. Tsai, C.-C. Kuo, F.-C. Jhuang, H.-C. Guo, S.-P. Chen, Y.-C. Liao, T. Satoh, and S.-H. Tung, "Facile Preparation of Cu/Ag Core/Shell Electrospun Nanofibers as Highly Stable and Flexible Transparent Conductive Electrodes for Optoelectronic Devices", ACS Appl. Mater. Interfaces, 11, 10118-10127 (2019).
  • X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, "25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties", Adv. Mater., 25, 6313-6333 (2013).
  • Y. Sun, and Y. Xia, "Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction", Nano Lett., 3, 1569-1572 (2003).
  • R. Ojani, J. B. Raoof, and E. Hasheminejad, "One-step electroless deposition of Pd/Pt bimetallic microstructures by galvanic replacement on copper substrate and investigation of its performance for the hydrogen evolution reaction", Int. J. Hydrogen Energy, 38, 92-99 (2013).
  • B. Zhang, W. Li, J. Jiu, Y. Yang, J. Jing, K. Suganuma, and C.-F. Li, "Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics", Inorg. Chem., 58, 3374-3381 (2019).
  • H. Zhang, S. Wang, C. Hang, and Y. Tian, "Joining of copper nanowires by electrodepositing silver layer for high-performance transparent electrode", Weld. World, 65, 1021-1030 (2021).
  • H. Zhang, S. Wang, Y. Tian, Y. Liu, J. Wen, Y. Huang, C. Hang, Z. Zheng, and C. Wang, "Electrodeposition fabrication of Cu@Ni core shell nanowire network for highly stable transparent conductive films", Chem. Eng. J., 390, 124495 (2020).
  • D. Mardiansyah, T. Badloe, K. Triyana, M. Q. Mehmood, N. Raeis-Hosseini, Y. Lee, H. Sabarman, K. Kim, and J. Rho, "Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating", Sci. Rep., 8, 1-9 (2018).
  • A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, "The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films", Adv. Mater., 22, 3558-3563 (2010).
  • J. Koo, S. Kwon, N. R. Kim, K. Shin, and H. M. Lee, "Ethylenediamine-Enhanced Oxidation Resistivity of a Copper Surface during Water-Based Copper Nanowire Synthesis", J. Phys. Chem. C, 120, 3334-3340 (2016).
  • J. Kim, J. You, B. Kim, T. Park, and E. Kim, "Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films", Adv. Mater., 23, 4168-4173 (2011).
  • B. Zhang, W. Li, Y. Yang, C. Chen, C.-F. Li, and K. Suganuma, "Fully embedded CuNWs/PDMS conductor with high oxidation resistance and high conductivity for stretchable electronics", J. Mater. Sci., 54, 6381-6392 (2019).
  • Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer, "Boron nitride nanotubes: Pronounced resistance to oxidation", Appl. Phys. Lett., 84, 2430-2432 (2004).
  • G. Liu, J. Wang, Y. Ge, Y. Wang, S. Lu, Y. Zhao, Y. Tang, A. M. Soomro, Q. Hong, X. Yang, F. Xu, S. Li, L.-J. Chen, D. Cai, and J. Kang, "Cu Nanowires Passivated with Hexagonal Boron Nitride: An Ultrastable, Selectively Transparent Conductor", ACS Nano, 14, 6761-6773 (2020).