2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(2); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(2):65-70. Published online: Aug, 18, 2023

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates

  • Tae Wan Park1 , Seungmin Kim2 , Eun Bin Kang1 , and Woon Ik Park1,2,†
    1 Department of Materials Science and Engineering, Pukyong National University, Busan 48513, Republic of Korea, 2 RanoM R&D center, RanoM Co., Ltd., Pusan 48548, Republic of Korea
Corresponding author E-mail: thane0428@pknu.ac.kr
Abstract

Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-tomicroscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 µm to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

Keywords Imprint lithography, Al foil, Al plate, Nanostructure

REFERENCES
  • S. L. Hem and H. HogenEsch, "Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation", Expert Rev. Vaccines, 6, 685 (2007).
  • Y. Chen, S. Zhao, H. Ma, H. Wang, L. Hua, and S. Fu, "Analysis of hydrogen embrittlement on aluminum alloys for vehicle-mounted hydrogen storage tanks: A review", Metals, 11, 1303 (2021).
  • T. Shi, J. Liang, X. Li, C. Zhang, and H. Yang, "Improving the Corrosion Resistance of Aluminum Alloy by Creating a Superhydrophobic Surface Structure through a Two-Step Process of Etching Followed by Polymer Modification", Polymers, 14, 4509 (2022).
  • D. Luo, F. Li, and G. Xing, "Corrosion resistance of 6061-T6 aluminium alloy and its feasibility of near-surface reinforcements in concrete structure", Rev. Adv. Mater. Sci., 61, 638 (2022).
  • C. Cepeda-Jimenez, O. A. Ruano, M. Carsi, and F. Carreno, "Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization", Mater. Sci. Eng. A, 552, 530 (2012).
  • H. Kang, S. Kim, B. Jang, and H. Kim, "High Temperature Deformation and Microstructural Evolution of Homogenized AA 2026 Alloy", Korean J. Met. Mater., 61, 338 (2023).
  • K. U. Bhat, D. B. Panemangalore, S. B. Kuruveri, M. John, and P. L. Menezes, "Surface modification of 6xxx Series aluminum alloys", Coatings, 12, 180 (2022).
  • W. Xing, Z. Li, H. Yang, X. Li, X. Wang, and N. Li, "Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser", Mater. Des., 183, 108156 (2019).
  • D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, "Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide", Nano Energy, 79, 105426 (2021).
  • Z. Huang, H. Li, Z. Yang, H. Wang, J. Ding, L. Xu, Y. Tian, D. Mitlin, J. Ding, and W. Hu, "Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity", Energy Storage Mater., 51, 273 (2022).
  • H. Wu, Y. Jiao, C. Zhang, C. Chen, L. Yang, J. Li, J. Ni, Y. Zhang, C. Li, and Y. Zhang, "Large area metal micro-/nanogroove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography", Nanoscale, 11, 4803 (2019).
  • B. Radha, S. H. Lim, M. S. Saifullah, and G. U. Kulkarni, "Metal hierarchical patterning by direct nanoimprint lithography", Sci. Rep., 3, 1 (2013).
  • A. Kumar, K. Hsu, K. Jacobs, P. Ferreira, and N. Fang, "Direct metal nano-imprinting using an embossed solid electrolyte stamp", Nanotechnology, 22, 155302 (2011).
  • S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography", J. Vac. Sci. Technol. B, 14, 4129 (1996).
  • R. Nishitsuji, K. Sueyoshi, H. Hisamoto, T. Endo, "Fabrication of Gold Nanostructures on Quartz Crystal Microbalance Surface Using Nanoimprint Lithography for Sensing Applications", Micromachines 13, 1430 (2022).
  • W. I. Park, T. W. Park, Y. J. Choi, S. Lee, S. Ryu, X. Liang, and Y. S. Jung, "Extreme-Pressure Imprint Lithography for Heat and Ultraviolet-Free Direct Patterning of Rigid Nanoscale Features", ACS Nano, 15, 10464 (2021).
  • J. W. Yi and M. Jeong, "A Study on the Surface and Manufacturing Method of Nanostructure for Amplification of Plasmonic Phenomena of Nanoparticles", J. Microelectron. Packag. Soc., 29(1), 55 (2022).
  • J. Liu, S. Yang, Z. Liu, H. Guo, Z. Liu, Z. Xu, C. Liu, and L. Wang, "Patterning sub-30 µm liquid metal wires on PDMS substrates via stencil lithography and pre-stretching", J. Micromech. Microeng., 29, 095001 (2019).
  • T. W. Park and W. I. Park, "Formation of Surface-Wrinkled Metal Nanosheets via Thermally Assisted Nanotransfer Printing", Korean J. Met. Mater., 59, 880 (2019).
  • H. Chen, S. Chuang, H. Cheng, C. Lin, T. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure", Microelectron. Eng., 83, 893 (2006).
  • T. W. Park, M. Byun, H. Jung, and W. I. Park, "Effect of Surface Roughness on the Formation of Nano-to-Mirco Patterns Using Pattern Transfer Printing", Korean J. Met. Mater., 58, 26 (2019).
  • H. Gao, Y. Hu, Y. Xuan, J. Li, Y. Yang, R. V. Martinez, C. Li, J. Luo, M. Qi, and G. J. Cheng, "Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures", Science, 346, 1352 (2014).
  • S. Barcelo and Z. Li, "Nanoimprint lithography for nanodevice fabrication", Nano Converg., 3, 1 (2016).
  • H. Lee, S. Hong, K. Yang, and K. Choi, "Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography", Appl. Phys. Lett., 88, 143112 (2006).
  • H. Mao, L. Zhang, L. Wen, L. Huang, L. Tan, and Y. Chen, "Nanoimprint Lithography-Dependent Vertical Composition Gradient in Pseudo-Planar Heterojunction Organic Solar Cells Combined with Sequential Deposition", Adv. Funct. Mater., 33, 2209152 (2023).
  • S. H. Ahn and L. J. Guo, "Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting", ACS Nano, 3, 2304 (2009).
  • C. H. Moon, K.-S. Han, M. Kim, D. K. Oh, S. Yi, T. Kim, H. Kim, J. Hwang, J. G. Nam, and D.-E. Lee, "Scaling up the sub-50 nm-resolution roll-to-roll nanoimprint lithography process via large-area tiling of flexible molds and uniform linear UV curing", J. Mech. Sci. Technol., 37, 271 (2023).