2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(3); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(3):20-24. Published online: Nov, 9, 2023

Recent Progress of Ti3C2Tx MXene Electrode Based Self-Healing Application

  • Jun Sang Choi1 , Seung-Boo Jung2 , and Jong-Woong Kim1,3†
    1 Department of Smart Fab Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea, 2 School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea, 3 School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
Corresponding author E-mail: wyjd@skku.edu
Abstract

Single or multi-layered two-dimensional (2D) materials, with thicknesses in the order of a few nanometers, have garnered substantial attention across diverse research domains owing to their distinct properties, including electrical conductivity, flexibility, and optical transparency. These materials are frequently subjected to repetitive mechanical actions in applications like electronic skin (E-Skin) and smart textiles. Moreover, they are often exposed to external factors like temperature, humidity, and pressure, which can lead to a deterioration in component durability and lifespan. Consequently, significant research efforts are directed towards developing self-healing properties in these components. Notably, recent investigations have revealed promising outcomes in the field of self-healing composite materials, with Ti3C2Tx MXene being a prominent component among the myriad of available 2D materials. In this paper, we aim to introduce various synthesis methods and characteristics of Ti3C2Tx MXene, followed by an exploration of self-healing application technologies based on Ti3C2Tx MXene.

Keywords Ti3C2Tx MXene, MXene electrode, Self-Healing, 2D materials, Wearable sensor

REFERENCES
  • D. L. Wen, D. H. Sun, P. Huang, W. Huang, M. Su, Y. Wang, M. D. Han, B. J. Kim, J. Brugger, H. X. Zhang and X. S. Zhang, "Recent progress in silk fibroin-based flexible electronics", Microsyst. Nanoeng., 35(7), 1 (2021)
  • S. B. Choi, C. R. Lee, S. B. Jung and J. W. Kim, "Technical Trends of Stretchable Electrodes", J. Microelectron. Packag. Soc., 26(3), 23 (2019)
  • Y. Tomoyuki, F. Kenjiro and S. Tako, "Recent Progress of Flexible Image Sensors for Biomedical Applications", Adv. Mater., 33(19), 2004416 (2021)
  • S. Terrym, J. Langenbach, E. Roles, J. Brancart, C. B. Hassani, Q. A. Poutrel, A. Georgopoulou, T. G. Thuruthel, A. Safaei, P. Ferrentino, T. Sebastian, S. Norvez, F. lida, A. W. Bosman, F. Tournilhac, F. Clemens, G. V. Assche and B. Vanderborght, "A review on self-healing polymers for soft robotics", Mater. Today, 47, 187 (2021)
  • M. Qi, R. Yang, Z. Wang, Y. Liu, Q. Zhang, B. He, K. Li, Q. Yang, L. Wei, C. Pan and M. Chen, "Bioinspired Self-healing Soft Electronics", Adv. Funct. Mater., 33(17), 2214479 (2023)
  • P. Bertsch, M. Diba, D. J. Mooney and S. C. G. Leeuwenburgh, "Self-Healing Injectable Hydrogels for Tissue Regeneration", Chem. Rev., 123(2), 834 (2022)
  • S. B. Choi, J. S. Meena and J. W. Kim, "Revolutionizing Thermal Stability and Self-Healing in Pressure Sensors: A Novel Approach", Adv. Fiber. Mater., (2023)
  • L. Yang, Z. Wang, H. Wang, B. Jin, C. Meng, X. Chen, R. Li, H. Wang, M. Xin, Z. Zhao, S. Guo, J. Wu and H. Cheng, "Self-Healing, Reconfigurable, Thermal-Switching, Transformative Electronics for Health Monitoring", Adv. Mater., 35(15), 2207742 (2023)
  • S. Chuangchote and M. Nukunudompanich, "Self-Healing Carbon Fiber-Reinforced Polymers for Aerospace Applications", Aerosp Sci Technol, 85 (2022)
  • H. Yin, P. Song, X. Chen, Q. Huang and H. Huang, "A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material", Int. J. Biol. Macromol., 30, 1606 (2022)
  • C. Liu, R. Zhang, H. Liu and X. Nong, "Self-healing concrete with recycled coarse aggregate: The performance of biochemical-chloride ion transport", J. Build. Eng., 57, 104925 (2022)
  • J. Jiao, G. Lai, L. Zhao, J. Lu, Q. Li, X. Xu, Y. Jiang, Y. B. He, C. Quyang, F. Pan, H. Li and J. Zheng, "Self-Healing Mechanism of Lithium in Lithium Metal", Adv. Sci., 9(12), 2105574 (2022)
  • C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian, G. Chang, Y. Zhang, Q. Tang, A. Hu and X. Chen, "Self-Healing SeO2 Additives Enable Zinc Metal Reversibility in Aqueous ZnSO4 Electrolytes", Adv. Funct. Mater., 32(18), 2112091 (2022)
  • J. Huang, L. Guo and L. Zhong, "Synergistic healing mechanism of self-healing ceramics coating", Ceramics International, 48(5), 6520 (2022)
  • J. Xiang, Z. Li, J. Qiu, N. Wu and H. Cheng, "Investigating the potential for porous ceramics as bacterial carrier in self-healing cemented paste backfill", Ceramics International, 49(9), 13490 (2023)
  • B. Li, P. F. Cao, T. Saito and A. P. Sokolov, "Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges", Chem. Rev., 123(2), 701 (2023)
  • Z. Li, R. Yu and B. Guo, "Shape-Memory and Self-Healing Polymers Based on Dynamic Covalent Bonds and Dynamic Noncovalent Interactions: Synthesis, Mechanism, and Application", ACS Appl. Bio Mater., 4(8), 5926 (2021)
  • S. W. Cho, S. Y. Hwang, D. X. Oh and J. Y. Park, "Recent progress in self-healing polymers and hydrogels based on reversible dynamic B-O bonds: boronic/boronate esters, borax, and benzoxaborole", J. Mater. Chem. A, 9, 14630 (2021)
  • T. Jing, X. Heng, X. Guifeng, L. Li, P. Li and X. Guo, "Rapid self-healing and tough polyurethane based on the synergy of multi-level hydrogen and disulfide bonds for healing propellant microcracks", Mater. Chem. Front., 6, 1161 (2022)
  • Y. Cai, L. Yan, Y. Wang, Y. Ge, M. Liang, Y. Chen, H. Zou and S. Zhou, "A room temperature self-healing and thermally reprocessable cross-linked elastomer with unprecedented mechanical properties for ablation-resistant applications", Chem. Eng. J., 436, 135156 (2022)
  • D. Q. Li, S. Y. Wang, Y. J. Meng, Z. W. Guo, M. M. Cheng and J. Li, "Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility", Carbohydr. Polym., 268, 118244 (2021)
  • D. Yilmaz, D. Lansade, S. Lewandowski, S. Perraud, A. Llevot and S. Carlotti, "Combination of permanent hydrosilylation and reversible Diels-Alder reactions for self-healing poly(dimethylsiloxane) materials with enhanced ageing properties", Mater. Today Chem., 24, 100860 (2022)
  • Y. H. Eom, S. M. Kim, M. K. Lee, H. N. Jeon, J. D. Park, E. S. Lee, S. Y. Hwang, J. Y. Park and D. Y. Oh, "Mechanoresponsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing", Nat. Commun., 12, 621 (2021)
  • C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun, Q. Gao, C. Gao and R. Liu, "Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics", Nano Energy, 95, 106991 (2022)
  • P. Hu, Q. Xie, C. Ma and G. Zhang, "Fouling resistant silicone coating with self-healing induced by metal coordination", Chem. Eng. J., 406, 126870 (2021)
  • C. N. Z. Schmitt, Y. Politi, A. Reinecke and M. J. Harrington, "Role of Sacrificial Protein-Metal Bond Exchange in Mussel Byssal Thread Self-Healing", Biomacromolecules, 16(9), 2582 (2015)
  • M. Zhu, S. He, Y. Dai, J. Han, L. Gan, J. Liu and M. Long, "Long-Lasting Sustainable Self-Healing Ion Gel with Triple-Network by Trigger-Free Dynamic Hydrogen Bonds and Ion Bonds", ACS Sustain. Chem. Eng., 6(12), 17087 (2018)
  • X. Wang, D. Liang and B. Cheng, "Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond", Compos Sci Technol, 193, 108127 (2020)
  • W. Yu, K. Gong, Y. Li, B. Ding, L. Li, Y. Xu, R. Wang, L, Li, G. Zhang and S. Lin, "Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications", Small, 18(14), 2105383 (2022)
  • Q. Jiang, R. Siyuan, L. Runcong, W. Liqiang, C. Wei, T. Wei and K. Na, "2D materials-based nanomedicine: From discovery to applications", Adv. Drug Deliv. Rev., 185, 114268 (2022)
  • V. Shanmugam, R. A. Mensah, K. Babu, S. Gawusu, A. Chanda, Y. Tu, R. E. Neisiany, M. Forsth, G. Sas and O. Das "A Review of the Synthesis, Properties, and Applications of 2D Materials", Part Part Syst Charact, 39(6), 2200031 (2022)
  • J. An, X. Zhao, Y. Zhang, M. Liu, J. Yuan, X. Sun, Z. Zhang, B. Wang, S. Li amd D. Li, "Perspectives of 2D Materials for Optoelectronic Integration", Adv. Funct. Mater., 32(14), 2110119 (2021)
  • M. Marian, D. Berman, D. Necas, N. Emami, A. Ruggiero, A. Rosenkrazn, "Roadmap for 2D materials in biotribological/biomedical applications - A review", J. Colloid Interface Sci., 307, 102747 (2022)
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, 306(5696), 666 (2004)
  • J. Wu, H. Lin, D. J. Moss, K. P. Loh and B. Jia, "Graphene oxide for photonics, electronics and optoelectronics", Nat. Rev. Chem., 7, 162 (2023)
  • Y. Xiao, C. Xiong, M. M. Chen, S. Wang, L. Fu and X. Zhang, "Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications", Chem. Soc. Rev., 52, 1215 (2023)
  • Y. V. Kaneti, D. P. Benu, X. Xu, B. Yuiarto, Y. Yamauchi and D. Golberg, "Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications", Chem. Rev., 1(122), 1000 (2022)
  • A. S. Sethlekshmi, A. Saritha, K. Joseph, A. S. Aprem, S. B. Sispal, "MoS2 based nanomaterials: Advanced antibacterial agents for future", J Control Release, 348, 158 (2022)
  • A. E. Naclerio and R. R. Kidambi, "A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications", Adv. Mater., 35(6), 2207374 (2023)
  • G. Murali, J. K. R. Modigunta, Y. H. Park, J. H. Lee, J. Rawal, S. Y. Lee and S. J. Park, "A Review on MXene Synthesis, Stability, and Photocatalytic Applications", ACS Nano, 16(9), 13370 (2022)
  • S. B. Choi, J. S. Meena and J. W. Kim, Technical Trends of Ti3C2Tx MXene-based Flexible Electrodes", J. Microelectron. Packag. Soc., 29(1), 17 (2022)
  • H. Zhang, R. Su, L. Shi, D. J. O'Connor and H. Wen, "Structural changes of Ti3SiC2 induced by helium irradiation with different doses", Appl. Surf. Sci., 434, 1210 (2018)
  • S. Panda, K. Deshmukh, S. K. K. Pasha, J. Theerthagiri, S. Manickam and M. Y. Choi, "MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives", Coord Chem Rev, 462, 214518 (2022)
  • M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki and S. Yunoki, "Electronic properties and applications of MXenes: a theoretical review", J. Mater. Chem. C, 5, 2488 (2017)
  • B. Fu, J. Sun, C. Wang, C. Shang, L. Xu, J. Li and H. Zhang, "MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics", Small, 17(11), 2006054 (2021)
  • Y. Ibrahim, A. Mohamed, A. M. Abdelgawad, K. Eid, A. M. Abdullah and A. Elzatahry, "The Recent Advances in the Mechanical Properties of Self-Standing Two-Dimensional MXene-Based Nanostructures: Deep Insights into the Supercapacitor", Nanomaterials, 10(10), 1916 (2020)
  • C. Ma, M. G. Ma, C. Si, X. X. Ji and P. Wan, "Flexible MXene-Based Composites for Wearable Devices", Adv. Funct. Mater., 31(22), 2009524 (2021)
  • K. Gong, K. Zhou, X. Qian, C. Shi and B. Yu, "MXene as emerging nanofillers for high-performance polymer composites: A review", Compos. B. Eng., 217, 108867 (2021)
  • G. Li, P. Xiao, S. Hou and Y. Huang, "Graphene based self-healing materials", Carbon, 146, 371 (2019)
  • W. Feng and Z. Wang, "Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing", Carbohydr. Polym., 294, 119824 (2022)
  • X. Zhu, W. Zhang, G. Lu, H. Zhao and L. Wang, "Ultrahigh Mechanical Strength and Robust Room-Temperature Self-Healing Properties of a Polyurethane-Graphene Oxide Network Resulting from Multiple Dynamic Bonds", ACS Nano, 16(10), 16724 (2022)
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2", Adv. Mater., 23(37), 4248 (2011)
  • Y. B. Shin, Y. M. Kim, C. G. Kang, J. M. Oh and J. W. Kim, "Ultra-robust bonding between MXene nanosheets and stretchable", Adv. Nano Res., 11(5), 453 (2021)
  • X. Chen, Y. Zhu, M. Zhang, J. Sui, W. Peng, Y. Li, G. Zhang, F. Zhang and X. Fan, "N-Butyllithium-Treated Ti3C2Tx MXene with Excellent Pseudocapacitor Performance", ACS Nano, 13(8), 9449 (2019
  • V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra and M. W. Barsoum, "2D Ti3C2Tz MXene Synthesized by Water-free Etching of Ti3AlC2 in Polar Organic Solvents", Chem, 6, 613 (2020)
  • H. W. Wang, M. Naguib, K. Page, D. J. Wesolowski and Y. Gogotsi, "Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function", Chem. Mater., 28(1), 349 (2016)
  • M. A. Hope, A. C. Forsem, K. J. Griffith, M. R. Lukatskaya, M. Ghidiu, Y. Gogotsi and C. P. Grey, "NMR reveals the surface functionalisation of Ti3C2 MXene", Phys. Chem. Chem. Phys., 18, 5099 (2016)
  • M. Naguib, M. W. Barsoum and Y. Gogotsi, "Ten Years of Progress in the Synthesis and Development of MXenes", Adv. Mater., 33(39), 2103393 (2021)
  • J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. Gan and X. Tao, "Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors", ACS Nano, 11(3), 2459 (2017)
  • J. Come, J. M. Black, M. R. Lukatskaya, M. Naguib, M. Beidaghi, A. J. Rondinone, S. V. Kalinin, D. J. Wesolowski, Y. Gogotsi and N. Balke, "Controlling the actuation properties of MXene paper electrodes upon cation intercalation", Nano Energy, 17, 27 (2015)
  • H. S. Lim, J. M. Oh, B. W. Yoo, C. J. Han and J. W. Kim, "One-Way Continuous Deposition of Monolayer MXene Nanosheets for the Formation of Two Confronting Transparent Electrodes in Flexible Capacitive Photodetector", ACS Appl. Mater., 13(21), 25400 (2021)
  • J. Lipton, J. A. Rohr, V. Dang, A. Goad, K. Maleski, F. Lavini, M. Han, E. H. R. Tsai, G. M. Weng, J. M. Kong, E. Riedo, Y. Gogotsi and A. D. Taylor, "Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding", Matter, 3, 546 (2020)
  • M. Saraf, E. Shuck, N. Norouzi, K. Matthews, A. Inman, T. Zhang, E. Pomerantseva and Y. Gogotsi, "Free-Standing α-MoO3/Ti3C2 MXene Hybrid Electrode in Water-in-Salt Electrolytes", Energy Environ., 6(4), e12516 (2022)
  • O. Mashtalir, M. R. Lukatskaya, M. Q. Zhao, M. W. Barsoum and Y. Gogotsi, "Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices", Adv. Mater., 27(23), 3501 (2015)
  • O. Mashtalir, M. Naguib, V. N. Mochalin, Y. D. Agnese, M. Heon, M. W. Barsoum and Y. Gogotsi, "Intercalation and delamination of layered carbides and carbonitrides", Nat. Commun, 1716 (2013)
  • D. A. Qian, J. Y. Seo, H. Shi, J. Y. Lee and C. H. Chung, "Surface Functional Groups and Electrochemical Behavior in Dimethyl Sulfoxide-Delaminated Ti3C2Tx MXene", ChemSusChem, 11(21), 3719 (2018)
  • M. Naguib, R. R. Unocic, B. L. Armstrong and J. Nanda, "Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes"", Dalton Trans. 44(20), 9353 (2015)
  • D. Bury, M. Jakubczak, M. A. K. Purbayanto, A. Wojciechowska, D. Moszcynska and A. M. Jastrzebska, "Photocatalytic Activity of the Oxidation Stabilized Ti3C2Tx MXene in Decomposing Methylene Blue, Bromocresol Green and Commercial Textile Dye", Small 7(8), 2201252 (2023)
  • H. Wang, J. Zhang, Y. Wu, H. Huang, G. Li, X. Zhang and Z. Wang, "Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination", Appl. Suf. Sci., 384, 287 (2016)
  • M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. gogotsi and M. W. Barsoum, "Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance", Letters, 516, 78 (2014)
  • T. G. Oh, S. J. Lee, H. R. Kim, T. Y. Ko, S. J. Kim and C. M. Koo, "Fast and High-Yield Anhydrous Synthesis of Ti3C2Tx MXene with High Electrical Conductivity and Exceptional Mechanical Strength", Small, 18(46), 2203767 (2022)
  • Z. Huang, J. Qim, Y. Zhu, K. He, H. Chem, H. Y. Hoh, M. Batmunkh, T. M. Benedetti, Q. Zhang, C. Su, S. Zhang and Y. L. Zhong, "Green and scalable electrochemical routes for cost-effective mass production of MXenes for supercapacitor electrodes", Carbon Energy, early view, 2023
  • D. Qu, Y. Jian, L. Guo, C. Su, N. Tang, X. Zhang, W. Hu, Z. Wang, Z. Zhao, P. Zhong, P. Li, T. Du, H. Haick and W. Wu, "An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti3C2Tx MXene with Controllable Sizes and Improved Yield", Nanomicro Lett ., 13(188) (2021)
  • J. Xu, T. Peng, X. Qin, T. Liu, W. Dai, B. Chen, H. Yu and S. Shi, "Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices", J. Mater. Chem. A, 9, 14147 (2021)
  • A. S. Zeraati, S. A. Mirkhani, P. Sun, M. Naguib, P. V. Barun and U. Sundararaj, "Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance", Nanoscale, 13(6), 3572 (2021)
  • H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu and C. Li, "Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength", Adv. Funct. Mater, 30(5), 1906996 (2020)
  • T. Hu, M. Hu, Z. Li, H. Zhang, C. Zhang, J. Wang and X. Wang, "Interlayer coupling in two-dimensional titanium carbide MXenes", Phy. Chem. Chem. Phy., 18(30), 20256 (2016)
  • K. Hantanasiriakul, M. Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum and Y. Gogotsi, "Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties", Adv. Elec. Mater., 2(6), 1600050 (2016)
  • K. Maleski, C. E. Ren, M. Q. Zhao, B. Anasori and Y. Gogotsi, "Size-Dependent Physical and Electrochemical Properties of TwoDimensional MXene Flakes", ACS Appl. Mater., 10, 24491 (2018)
  • L. M. Zang and M. A. Fantin, "The Swiss Immigration to Misiones-Argentina (1935-1939): An Analysis Based on Migration Theories", Migraciones., 11(9) (2020)
  • C. L. Idimah, "Recent advancements in electromagnetic interference shielding of polymer and mxene nanocomposites", POLYM-PLAST TECH MAT, 62(1), 19 (2023)
  • A. H. Najafabadi, M. Mansoorianfar, T. Liang, K. Shahin, Y. Wen, A. Bahrami, C. Karaman, N. Zare, H. K. Maleh and Y. Vasseghian, "Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review", J. Water Process. Eng., 47, 102696 (2022)
  • X. Li, Z. Xue, W. Sun, J. Chu, Q. Wang, L. Tong and K. Wang, "Bio-inspired self-healing MXene/polyurethane coating with superior active/passive anticorrosion performance for Mg alloy", Chem. Eng. J., 454, 140187 (2023)
  • S. Gao, J. Ding, W. Wang and J. Lu, "MXene based flexible composite phase change material with shape memory, self-healing and flame retardant for thermal management", Compos Sci Technol, 234, 109945 (2023)
  • K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang, C. Song, Y. Wu and Y. Liu, "Self-Healing Ti3C2 MXene/PDMS Supramolecular Elastomers Based on Small Biomolecules Modification for Wearable Sensors", ACS Appl. Mater., 12, 45306 (2020)
  • E. Calo and V. V. Khutoryanskiy, "Biomedical applications of hydrogels: A review of patents and commercial products", Eur. Polym. J., 65, 252 (2015)
  • X. Li, L. He, Y. Li, M. Chao, M. Li, P. Wan and L. Zhang, "Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors", ACS Nano, 15, 7765 (2021)
  • A. Chae, G. Murali, S. Y. Lee, J. H. Gwak, S. J. Kim, Y. J. Jeong, H. S. Kang, S. M. Park, A. S. Lee, D. Y. Koh, I. S. In and S. J. Park, "Highly Oxidation-Resistant and Self-Healable MXene-Based Hydrogels for Wearable Strain Sensor", Adv. Funct. Mater., 33(24), 2213382 (2023)
  • H. Zhang, D. Zhang, Z. Wang, G. Xi, R. Mao, Y. Ma, D. Wang, M. Tang, Z. Xu and H. Luan, "Ultrastretchable, Self-Healing Conductive Hydrogel-Based Triboelectric Nanogenerators for Human-Computer Interaction", ACS Appl. Mater., 15, 5128 (2023)
  • J. Stergar and U. Maver, "Review of aerogel-based materials in biomedical applications", J. Solgel. Sci. Technol, 77, 738 (2016)
  • A. Du, B. Zhou, Z. Zhang and J. Shen, "A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel", Materials, 6(3), 941 (2013)
  • Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu, C. Luo, H. Zhang, F. Cheng, J. Rao, X. Hu, J. Su and Y. Gao, "Highly Self-Healable 3D Microsupercapacitor with MXene-Graphene Composite Aerogel", ACS Nano, 12, 4224 (2018)
  • W. W. Hu, X. Y. Shi, M. H. Gao, C. H. Huang, T. Huang, N. Zhang, J. H. Yang, X. D. Qi and Y. Wang, "Light-actuated shape memory and self-healing phase change composites supported by MXene/waterborne polyurethane aerogel for superior solar-thermal energy storage", Compos. Commun., 28, 100980 (2021)
  • Y. Cheng, Y. Xie, Z. Liu, S. Yan, Y. Ma, Y. Yue, J. Wang, Y. Gao and L. Li, "Maximizing Electron Channels Enabled by MXene Aerogel for High-Performance SelfHealable Flexible Electronic Skin", ACS Nano, 17, 1393 (2023)