2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(4); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(4):17-31. Published online: Feb, 20, 2024

Copper-Based Electrochemical CO2 Reduction and C2+ Products Generation: A Review

  • Jiwon Heo1 , Chaewon Seong1 , Vishal Burungale2 , Pratik Mane1 , Moo Sung Lee1†, and Jun-Seok Ha1,2†
    1Department of Advanced Chemicals & Engineering, Chonnam National University, Gwangju, Republic of Korea, 2Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, Republic of Korea
Abstract

Amidst escalating global warming fueled by indiscriminate fossil fuel consumption, concerted efforts are underway worldwide to mitigate atmospheric carbon dioxide (CO2) levels. Electrochemical CO2 reduction technology is recognized as a promising and environmentally friendly approach to convert CO2 into valuable hydrocarbon compounds, deemed essential for achieving carbon neutrality. Copper, among the various materials used as CO2 reduction electrodes, is known as the sole metal capable of generating C2+ compounds. However, low conversion efficiency and selectivity have hindered its widespread commercialization. This review highlights diverse research endeavors to address these challenges. It explores various studies focused on utilizing copper-based electrodes for CO2 reduction, offering insights into potential solutions for advancing this crucial technology.

Keywords Carbon dioxide reduction, Electrochemical catalysis, Copper-based electrodes, C2+ compound generation

REFERENCES
  • J. D. Shakun, P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, and E. Bard, "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation", Nature, 484(7392), 49-54 (2012).
  • S. Chu, and A. Majumdar, "Opportunities and challenges for a sustainable energy future", Nature, 488(7411), 294-303 (2012).
  • J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Norskov, "Materials for solar fuels and chemicals", Nat. Mater., 16(1), 70-81 (2016).
  • J. P. Gattuso, A. Magnan, R. Bille, W. W. L. Cheung, E. L. Howes, F. Joos, D. Allemand, L. Bopp, S. R. Cooley, C. M. Eakin, O. Hoegh-Guldberg, R. P. Kelly, H. O. Portner, A. D. Rogers, J. M. Baxter, D. Laffoley, D. Osborn, A. Rankovic, J. Rochette, U. R. Sumaila, S. Treyer, and C. Turley, "Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios", Science, 349(6243), 45 (2015).
  • M. Rohini, S. Kanase, R. S. Kanase, and S. H. Kang, "Effect of KHCO3 Concentration Using CuO Nanowire for Electrochemical CO2 Reduction Reaction", J. Microelectron. Packag. Soc., 27(4), 11-17 (2020).
  • P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. Muhd, "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)", Renew. Sustain. Energy Rev., 43, 843-862 (2015).
  • R. S. Haszeldine, S. Flude, G. Johnson, and V. Scott, "Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments", Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376(2119), (2018).
  • B. Rama (eds.), H.-O. Portner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem, "Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change", IPCC, Cambridge Univ. Press. Cambridge, UK New York, NY, USA, 3056 (2022).
  • H. B. Yang, S. F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Hu ang, H. Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, and B. Liu, "Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction", Nat. Energy, 3(2), 140-147 (2018).
  • S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, and Y. Xie, "Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel", Nature, 529(7584), 68-71 (2016).
  • D. Ren, J. Gao, L. Pan, Z. Wang, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, "Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels", Angew. Chemie - Int. Ed., 58(42), 15036-15040 (2019).
  • X. Fu, J. Wang, X. Hu, K. He, Q. Tu, Q. Yue, and Y. Kang, "Scalable Chemical Interface Confinement Reduction BiOBr to Bismuth Porous Nanosheets for Electroreduction of Carbon Dioxide to Liquid Fuel", Adv. Funct. Mater., 32(10), 1-8 (2022).
  • S. W. Bang, H. Rho, H. Bae, S. Kang, and J. Ha, "Improvement of Electrochemical Reduction Characteristics of Carbon Dioxide at Porous Copper Electrode using Graphene", J. Microelectron. Packag. Soc., 25(4), 105-109 (2018).
  • B. Gibbons, M. Cai, and A. J. Morris, "A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays", J. Am. Chem. Soc., 144(39), 17723-17736 (2022).
  • W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, and Z. Jin, "Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals", Adv. Sci., 5(1), (2018).
  • L. Fan, C. Y. Liu, P. Zhu, C. Xia, X. Zhang, Z. Y. Wu, Y. Lu, T. P. Senftle, and H. Wang, "Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products", Joule, 6(1), 205-220 (2022).
  • W. Liu, P. Zhai, A. Li, B. Wei, K. Si, Y. Wei, X. Wang, G. Zhu, Q. Chen, X. Gu, R. Zhang, W. Zhou, and Y. Gong, "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays", Nat. Commun., 13(1), 1-12 (2022).
  • C. Peng, G. Luo, J. Zhang, M. Chen, Z. Wang, T. K. Sham, L. Zhang, Y. Li, and G. Zheng, "Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol", Nat. Commun., 12(1), 1-8 (2021).
  • Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, and B. Han, "Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex", Nat. Commun., 10(1), (2019).
  • Y. Hori, R. Takahashi, Y. Yoshinami, and A. Murata, "Electrochemical reduction of CO at a copper electrode", J. Phys. Chem. B, 101(36), 7075-7081 (1997).
  • Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, and F. Jiao, "A selective and efficient electrocatalyst for carbon dioxide reduction", Nat. Commun., 5, 1-6 (2014).
  • T. Zheng, K. Jiang, and H. Wang, "Recent Advances in Electrochemical CO2-to-CO Conversion on Heterogeneous Catalysts", Adv. Mater., 30(48), 1-15 (2018).
  • S. Jin, Z. Hao, K. Zhang, Z. Yan, and J. Chen, "Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization", Angew. Chemie - Int. Ed., 60(38), 20627-20648 (2021).
  • J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Norskov, and T. F. Jaramillo, "Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes", ACS Catal., 7(7), 4822-4827 (2017).
  • Y. Chen, and M. W. Kanan, "Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts", J. Am. Chem. Soc., 134(4), 1986-1989 (2012).
  • Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, and S. Z. Qiao, "Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts", J. Am. Chem. Soc., 141(19), 7646-7659 (2019).
  • Y. Xu, F. Li, A. Xu, J. P. Edwards, S. F. Hung, C. M. Gabardo, C. P. O'Brien, S. Liu, X. Wang, Y. Li, J. Wicks, R. K. Miao, Y. Liu, J. Li, J. E. Huang, J. Abed, Y. Wang, E. H. Sargent, and D. Sinton, "Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly", Nat. Commun., 12(1), 4-10 (2021).
  • A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, and J. K. Norskov, "How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels", Energy Environ. Sci., 3(9), 1311-1315 (2010).
  • H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, and C. He, "Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol", J. Am. Chem. Soc., 141(32), 12717-12723 (2019).
  • X. Liu, B. Q. Li, B. Ni, L. Wang, and H. J. Peng, "A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts", J. Energy Chem., 64, 263-275 (2021).
  • L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, and Y. Lu, "Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products", Sci. Adv., 6(8), 1-18 (2020).
  • Z. Sun, T. Ma, H. Tao, Q. Fan, and B. Han, "Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials", Chem, 3(4), 560-587 (2017).
  • S. Hanselman, M. T. M. Koper, and F. Calle-Vallejo, "Computational Comparison of Late Transition Metal (100) Surfaces for the Electrocatalytic Reduction of CO to C2 Species", ACS Energy Lett., 3(5), 1062-1067 (2018).
  • C. Hahn, T. Hatsukade, Y. G. Kim, A. Vailionis, J. H. Baricuatro, D. C. Higgins, S. A. Nitopi, M. P. Soriaga, and T. F. Jaramillo, "Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons", Proc. Natl. Acad. Sci. U. S. A., 114(23), 5918-5923 (2017).
  • D. Ren, N. T. Wong, A. D. Handoko, Y. Huang, and B. S. Yeo, "Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n-Propanol", J. Phys. Chem. Lett., 7(1), 20-24 (2016).
  • L. Wu, K. E. Kolmeijer, Y. Zhang, H. An, S. Arnouts, S. Bals, T. Altantzis, J. P. Hofmann, M. Costa Figueiredo, E. J. M. Hensen, B. M. Weckhuysen, and W. Van Der Stam, "Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO2 reduction conditions", Nanoscale, 13(9), 4835-4844 (2021).
  • E. D. Goodman, J. A. Schwalbe, and M. Cargnello, "Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts", ACS Catal., 7(10), 7156-7173 (2017).
  • L. R. L. Ting, O. Pique, S. Y. Lim, M. Tanhaei, F. CalleVallejo, and B. S. Yeo, "Enhancing CO2 Electroreduction to Ethanol on Copper-Silver Composites by Opening an Alternative Catalytic Pathway", ACS Catal., 10(7), 4059-4069 (2020).
  • A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, and S. Z. Qiao, "Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction", Chem, 4(8), 1809-1831 (2018).
  • T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, and H. Wang, "Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst", Joule, 3(1), 265-278 (2019).
  • H. Shang, W. Sun, R. Sui, J. Pei, L. Zheng, J. Dong, Z. Jiang, D. Zhou, Z. Zhuang, W. Chen, J. Zhang, D. Wang, and Y. Li, "Engineering Isolated Mn-N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction", Nano Lett., 20(7), 5443-5450 (2020).
  • S. Shen, X. Peng, L. Song, Y. Qiu, C. Li, L. Zhuo, J. He, J. Ren, X. Liu, and J. Luo, "AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO2 to Ethanol", Small, 15(37), 1-7 (2019).
  • C. G. Morales-Guio, E. R. Cave, S. A. Nitopi, J. T. Feaster, L. Wang, K. P. Kuhl, A. Jackson, N. C. Johnson, D. N. Abram, T. Hatsukade, C. Hahn, and T. F. Jaramillo, "Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst", Nat. Catal., 1(10), 764-771 (2018).
  • C. Zhu, A. Chen, J. Mao, G. Wu, S. Li, X. Dong, G. Li, Z. Jiang, Y. Song, W. Chen, and W. Wei, "Cu-Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products", Small Struct., 4(5), 1-9 (2023).
  • S. Ma, M. Sadakiyo, M. Heim, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, and P. J. A. Kenis, "Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns", J. Am. Chem. Soc., 139(1), 47-50 (2017).
  • Y. B. Shin, Y. H. Ju, and J. Kim, "Technical Trends of Metal Nanowire-Based Electrode", J. Microelectron. Packag. Soc., 26(4), 15-22 (2019).
  • L. Han, B. Tian, X. Gao, Y. Zhong, S. Wang, S. Song, Z. Wang, Y. Zhang, Y. Kuang, and X. Sun, "Copper nanowire with enriched high-index facets for highly selective CO2 reduction", SmartMat, 3(1), 142-150 (2022).
  • H. S. Jeon, S. Kunze, F. Scholten, and B. Roldan Cuenya, "Prism-Shaped Cu Nanocatalysts for Electrochemical CO2 Reduction to Ethylene", ACS Catal., 8(1), 531-535 (2018).
  • Z. Yin, C. Yu, Z. Zhao, X. Guo, M. Shen, N. Li, M. Muzzio, J. Li, H. Liu, H. Lin, J. Yin, G. Lu, D. Su, and S. Sun, "Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene", Nano Lett., 8658-8663 (2019).