2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(4); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(4):79-85. Published online: Feb, 20, 2024

A Study on the Phase Change of Cubic Bi1.5Zn1.0Nb1.5O7(c-BZN) and the Corresponding Change in Dielectric Properties According to the Addition of Li2CO3

  • Yuseon Lee1 , Yunseok Kim1 , Seulwon Choi1 , Seongmin Han1 , and Kyoungho Lee1,2†
    1Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan-si, Chungcheongnam-do 31538, Korea, 2Department of Display and Materials Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan-si, Chungcheongnam-do 31538, Korea
Corresponding author E-mail: khlee@sch.ac.kr
Abstract

A novel low-temperature co-fired ceramic (LTCC) dielectric, composed of (1-4x)Bi1.5Zn1.0Nb1.5O7-3xBi2Zn2/3Nb4/3O7-2xLiZnNbO4 (x=0.03-0.21), was synthesized through reactive liquid phase sintering of Bi1.5Zn1.0Nb1.5O7-xLi2CO3 ceramic at temperatures ranging from 850℃ to 920℃ for 4 hours. During sintering, Li2CO3 reacted with Bi1.5Zn1.0Nb1.5O7, resulting in the formation of Bi2Zn2/3Nb4/3O7, and LiZnNbO4. The resulting sintered body exhibited a relative sintering density exceeding 96% of the theoretical density. By altering the initial Li2CO3 content (x) and consequently modulating the volume fraction of Bi1.5Zn1.0Nb1.5O7, Bi2Zn2/3Nb4/3O7, and LiZnNbO4 in the final sintered body, a sample with high dielectric constant (εr), low dielectric loss (tan δ), and the temperature coefficient of dielectric constant (TCε) characterized by NP0 specification (TCε ≤ ±30 ppm/℃) was achieved. As the Li2CO3 content increased from x=0.03 mol to x=0.15 mol, the volume fraction of Bi2Zn2/3Nb4/3O7 and LiZnNbO4 in the composite increased, while the volume fraction of Bi1.5Zn1.0Nb1.5O7 decreased. Consequently, the dielectric constant (εr) of the composite materials varied from 148.38 to 126.99, the dielectric loss (tan δ) shifted from 5.29×10-4 to 3.31×10-4, and the temperature coefficient of dielectric constant (TCε) transitioned from -340.35 ppm/℃ to 299.67 ppm/℃. A dielectric exhibiting NP0 characteristics was achieved at x=0.09 for Li2CO3, with a dielectric constant (εr) of 143.06, a dielectric loss (tan δ) value of 4.31×10-4, and a temperature coefficient of dielectric constant (TCε) value of -9.98 ppm/℃. Chemical compatibility experiment with Ag electrode revealed that the developed composite material exhibited no reactivity with the Ag electrode during the co-firing process.

Keywords Bi1.5Zn1.0Nb1.5O7, Li2CO3, Bi2Zn2/3Nb4/3O7, LiZnNbO4, LTCC, NP0

REFERENCES
  • H. L. Pan, Y. X. Mao, L. Cheng, and H. T. Wu, "New Li3Ni2NbO6 microwave dielectric ceramics with the orthorhombic structure for LTCC applications", J. Alloys Compd., 723, 667-674 (2017).
  • M. Ma, H. Khan, W. Shan, Y. Wang, J. Z. Ou, Z. Liu, and K. K. Y. Li, "A novel wireless gas sensor based on LTCC technology", Sens. Actuators B., 239, 711-717 (2017).
  • R. A. Potyrailo, C. Surman, N. Nagraj, and A. Burns, "Materials and transducers toward selective wireless gas sensing", Chem. Rev., 111, 7315 (2011).
  • D. Kim and K. Lee, "Fabrication of a novel ultra low temperature co-fired ceramic (ULTCC) using BaV2O6 and BaWO4", J. Microelectron. Packag. Soc., 28(4), 11-18 (2021).
  • J. Jung, D. Seo, and J. Ryu, "A study on 8×4 dual-polarized array antenna for x-band using LTCC-based ME dipole antenna structure", J. Microelectron. Packag. Soc., 28(3), 25-32 (2021).
  • J. Lee, J. Ryu, S. Choi, and J. Lee, "Implementation of passive elements applied LTCC substrate for 24-GHz frequency band", J. Microelectron. Packag. Soc., 28(2), 81-88 (2021).
  • C. Khaw, K. Tan, and C. Lee, "High temperature dielectric properties of cubic bismuth zinc tantalite", Ceram. Int., 35, 1473-1480 (2009).
  • Q. Guo, L. Li, S. Yu, Z. Sun, H. Zheng, J. Li, and W. Luo, "Temperature-stable dielectrics based on Cu-doped Bi2Mg2/3Nb4/3O7 pyrochlore ceramics for LTCC", Ceram. Int., 44, 333-338 (2018).
  • S. Gharbi, R. Dhahri, M. Rasheed, E. Dhahri, R. Barille, M. Rguiti, A. Tozri, and M. R. Berber, "Effect of Bi substitution on nanostructural, morphologic, and electrical behavior of nanocrystalline La1-xBixNi0.5Ti0.5O3 (x = 0 and x = 0.2) for the electrical devices", Mater. Sci. Eng. B, 270, 115191 (2021).
  • F. Dkhilalli, S. Megdiche, K. Guidara, M. Rasheed, R. Barille, and M. Megdiche, "AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2BiWO4", Ionics, 24, 169-180 (2018).
  • A. Mergen, H. Zorlu, M. Ozdemir, and M. Yumak, "Dielectric properties of Sm, Nd and Fe doped Bi1.5Zn0.92Nb1.5O6.92 pyrochlores", Ceram. Int., 37, 37-42 (2011).
  • A. F. Qasrawi, B. H. Kmail, and A. Mergen, "Synthesis and characterization of Bi1.5Zn0.92Nb1.5-xSnxO6.92-x/2 pyrochlore ceramics", Ceram. Int., 38, 4181-4187 (2012).
  • H. Du and X. Yao, "Effects of Sr substitution on dielectric characteristics in Bi1.5ZnNb1.5O7 ceramics", Mater. Sci. Eng. B, 99, 437-440 (2003).
  • S. L. Swartz and T. R. Shrout, "Ceramic composition for BZN dielectric resonator", U.S. Patent No. 9449652 (1995).
  • W. Ren, S. Trolier-McKinstry, C. A. Randall, and T. R. Shrout, "Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications", J. Appl. Phys., 89, 767-774 (2001).
  • D. P. C ann, C . A. Randall, and T. R. Shrout, "Investigation of the dielectric properties of bismuth pyrochlores", Solid State Commun., 100, 529-534 (1996).
  • X. L. Wang, H. Wang, and X. Yao, "Structure, phase transformations and dielectric properties of pyrochlores containing bismuth", J. Am. Ceram. Soc., 80(10), 2745-2748 (1997).
  • M. Valant and P. K. Davies, "Crystal chemistry and dielectric properties of chemically substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2(Zn2/3Nb4/3)O7 pyrochlores", J. Am. Ceram. Soc., 83(1), 147-153 (2000).
  • R. L. Thayer, "Bismuth zinc niobate films for dielectric applications", M. S. Thesis, pp.221-223, The Pennsylvania State University, U.S.A (2002)
  • L. D. Vuong, "Effect of Li2CO3 addition on the sintering behavior and physical properties of PZT-PZN-Pmnn ceramics", Int. J. Mater. Sci. Appl., 2(3), 89-93 (2013).
  • B. Nan, A. Matousek, P. Tofel, V. Bijalwan, T. Button, L. Li, P. Fan, and H. Zhang, "Effect of lithium carbonate on the sintering, microstructure, and functional properties of sol-gel-derived Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics", J. Mater. Res., 36, 1105-1113 (2021).
  • F. Roulland, R. Terra, G. Allainmat, M. Pollet, and S. Marinel, "Lowering of BaB'1/3B''2/3O3 complex perovskite sintering temperature by lithium salt additions", J. Euro. Ceram. Soc., 24, 1019-1023 (2004).
  • A. E. Paladino, "Temperature-compensated MgTi2O5-TiO2 dielectrics", J. Am. Ceram. Soc., 54(3), 168-169 (1971).
  • W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, "Introduction to ceramics", 2nd edition, Wiley, New York, pp. 947 (1976).
  • F. Zhao, Z. Yue, Y. Lin, Z. Gui, and L. Li, ''Phase relation and microwave dielectric properties of xCaTiO3-(1-x)TiO2-3ZnTiO3 multiphase ceramics'', Ceram. Int., 33, 895-900 (2007).
  • H. Wang and X. Yao, "Bismuth-based pyrochlore dielectric ceramics for microwave applications" in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Z.G. Ye, Eds., pp.503-538, Woodhead Publishing Limited, Cambridge (2008).
  • B. Zhang, L. Li, and W. Luo, "Chemical substitution in spinel structured LiZnNbO4 and its effects on the crystal structure and microwave performance", J. Alloys Compd., 771, 15-24 (2019).