2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(4); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(4):91-97. Published online: Feb, 20, 2024

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO

  • Chaewon Seong1 , Hyojung Bae2 , Sea Cho1 , Jiwon Heo1 , Eun Mi Han1†, and Jun-Seok Ha1†
    1Department of Chemicals & Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea, 2Photonics Energy Materials Research Center, Korea Photonics Technology Institute (KOPTI), Cheomdanbencheo-ro 108 beon-gil 9, Buk-gu, Gwangju 61007, Korea
Corresponding author E-mail: emhan@chonnam.ac.kr, jsha@jnu.ac.kr
Abstract

Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2 ) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2 ) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Keywords Electrochemical (EC), CO2 reduction (CO2RR), Copper-based catalysts, Tin oxide (SnO2)

REFERENCES
  • M. Rafiq, X. Hu, Z. Ye, A. Qayum, H. Xia, L. Hu, F. Lu, and P. K. Chu, "Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts", Nano Energy, 106661 (2022).
  • X. Liu and C. Wang, "In situ wet etching of mos2 @dwo3 heterostructure as ultra-stable highly active electrocatalyst for hydrogen evolution reaction", Catalysts, 10(9), 1-12 (2020).
  • G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, and L. Dai, "Electrocatalysis for CO2 conversion: From fundamentals to value-added products", Chem. Soc. Rev., 50(8), 4993-5061 (2021).
  • A. Engelbrecht, M. Hammerle, R. Moos, M. Fleischer, and G. Schmid, "Improvement of the selectivity of the electrochemical conversion of CO2 to hydrocarbons using cupreous electrodes with in-situ oxidation by oxygen", Electrochim. Acta, 224, 642-648 (2017).
  • D. Kim, C. S. Kley, Y. Li, and P. Yang, "Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products", Proc. Natl. Acad. Sci. U. S. A., 114(40), 10560-10565 (2017).
  • Y. Pang, T. Burdyny, C. T. Dinh, M. G. Kibria, J. Z. Fan, M. Liu, E. H. Sargent, and D. Sinton, "Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4", Green Chem., 19(17), 4023-4030 (2017).
  • X. Wang, H. Chen, R. Jiang, X. Hong, J. Peng, W. Chen, J. Jiang, J. Li, D. Huang, H. Dai, W. Wang, J. Lu, Y. Zhao, and W. Wu, "Interleukin-17 activates and synergizes with the notch signaling pathway in the progression of pancreatic ductal adenocarcinoma", Cancer Lett., 508, 1-12 (2021).
  • F. Scholten, I. Sinev, M. Bernal, and B. R. Cuenya, "Plasma-Modified Dendritic Cu Catalyst for CO2 Electroreduction", ACS Catal., 9, 5496-5502 (2019).
  • D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, and B. S. Yeo, "Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) oxide catalysts", ACS Catal., 5(5), 2814-2821 (2015).
  • C. Chen, X. Sun, X. Yan, Y. Wu, M. Liu, S. Liu, Z. Zhao, and B. Han, "A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products", Green Chem., 22(5), 1572-1576 (2020).
  • M. Rohini, S. Kanase, R. S. Kanase, and S. H. Kang, "Effect of KHCO3 Concentration Using CuO Nanowire for Electrochemical CO2 Reduction Reaction", Packag. Soc., 27(4), 11-17 (2020).
  • J. Li, M. Zhu, and Y. F. Han, "Elucidating the structure evolution and reaction mechanism of the Cu-In bimetallic catalysts during CO2RR", J. Catal., 415, 165-173 (2022).
  • B. Wei, Y. Xiong, Z. Zhang, J. Hao, L. Li, and W. Shi, "Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet", Appl. Catal. B Environ., 283, 119646 (2021).
  • X. Su, Y. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Li, and J. He, "Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products", Appl. Catal. B Environ., 269, 118800 (2020).
  • X. Wang, J. Lv, J. Zhang, X. L. Wang, C. Xue, G. Bian, D. Li, Y. Wang, and T. Wu, "Hierarchical heterostructure of SnO2 confined on CuS nanosheets for efficient electrocatalytic CO2 reduction", Nanoscale, 12(2), 772-784 (2020).
  • T. Kim, H.-H. Park, H. Choi, Y. Kim, and J. Lee, "Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation", J. Microelectron. Packag. Soc., 28(1), 61 (2021).
  • S. Cho and S. E. Kim, "Effect of Si grinding on electrical properties of sputtered tin oxide thin films", J. Microelectron. Packag. Soc., 25(2), 49-53 (2018).
  • Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, and C. P. Wong, "Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink", ACS Appl. Mater. Interfaces, 6(1), 560-567 (2014).
  • Y. Lu, X. Yuan, C. Jia, B. Lei, H. Zhang, Z. Zhao, S. Zhu, Q. Zhao, and W. Cai, "Self-Assembled Bifunctional Copper Hydroxide/Gold-Ordered Nanoarray Composites for Fast, Sensitive, and Recyclable SERS Detection of Hazardous Benzene Vapors", Nanomaterials, 13(13), (2023).
  • K. Wongsaprom, A. Winyayong, and S. Maensiri, "Synthesis and room-temperature ferromagnetism in flower-like SnO2 nanostructures", J. Phys. Conf. Ser., 1144(1), 012042 (2018).
  • D. Zhu, L. Wang, W. Yu, and H. Xie, "Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity", Sci. Rep., 8(1), 1-12 (2018).
  • B. Jia, L. Li, C. Xue, J. Kang, L. min Liu, T. Guo, Z. Wang, Q. Huang, and S. Guo, "Restraining Interfacial Cu2+ by using Amorphous SnO2 as Sacrificial Protection Boosts CO2 Electroreduction", Adv. Mater., 35(40), 1-8 (2023).
  • Y. Yue, X. Zou, Y. Shi, J. Cai, Y. Xiang, Z. Li, and S. Lin, "A low crystallinity CuO-SnO2/C catalyst for efficient electrocatalytic reduction of CO2", J. Electroanal. Chem., 928, 117089 (2023).
  • S. N. Zhang, M. Li, B. Hua, N. Duan, S. Ding, S. Bergens, K. Shankar, and J. L. Luo, "A Rational Design of Cu2O-SnO2 Core-Shell Catalyst for Highly Selective CO2-to-CO Conversion", ChemCatChem, 11(16), 4147-4153 (2019).
  • M. Ma, K. Djanashvili, and W. A. Smith, "Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires", Phys. Chem. Chem. Phys., 17(32), 20861-20867 (2015).