2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 30(4); 2023
  • Article

Review

Journal of the Microelectronics and Packaging Society 2023;30(4):105-111. Published online: Feb, 20, 2024

Reliability of Cu Interconnect under Compressive Fatigue Deformation Varying Interfacial Adhesion Treatment

  • Min Ju Kim, Jeong A Heo, Jun Hyeok Hyun, and So-Yeon Lee
    Department of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea
Corresponding author E-mail: soyeonlee@kumoh.ac.kr
Abstract

Electronic devices have been evolved to be mechanically flexible that can be endured repetitive deformation. This evolution emphasizes the importance of long-term reliability in metal wiring connecting electronic components, especially under bending fatigue in compressed environments. This study investigated methods to enhance adhesion between copper (Cu) and polyimide (PI) substrates, aiming to improve the reliability of copper wiring under such conditions. We applied oxygen plasma treatment and introduced a chromium (Cr) adhesion layer to the polyimide substrate. Our findings revealed that these adhesion enhancement methods significantly affect compression fatigue behavior. Notably, the chromium adhesion layer, while showing weaker fatigue characteristics at 1.5% strain, demonstrated superior performance at 2.0% strain with no delamination, outperforming other methods. These results offer valuable insights for improving the reliability of flexible electronic devices, including reducing crack occurrence and enhancing fatigue resistance in their typical usage environments.

Keywords Flexible device, Reliability, Interface adhesion, Metal film, Polyimide

REFERENCES
  • D. Corzo, T.-B. Guillermo, and B. Derya, "Flexible electronics: status, challenges and opportunities", Frontiers in Electronics, 1, 594003 (2020).
  • J. Chen and C. T. Liu, "Technology advances in flexible displays and substrates", IEEE Access, 1, 150 (2013).
  • J. G. Seol, D. J. Lee, T. W. Kim, and B.-J. Kim, "Reliability study on rolling deformation of ITO thin film on flexible substrate", J. Microelectron. Packag. Soc., 25(1), 29 (2018).
  • J. G. Seol and B.-J. Kim, "Electrical Reliability of ITO Film on Flexible Substrate During bending Deformations and Bending Fatigue", J. Microelectron. Packag. Soc., 24(4), 47 (2017).
  • W. Y. Kwon and B.-J. Kim, "Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation", J. Microelectron. Packag. Soc., 24(4), 53 (2017).
  • Y.-W. Kown and B.-J. Kim, "Mechanical Fatigue Lifetime of Metal Electrode for Flexible Electronics under High Temperature and High Humidity Condition", J. Microelectron. Packag. Soc., 27(2), 45 (2020).
  • M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, "Polyimide: Thermally Stable Polymer", Consultants Bureau, New York (1987).
  • W. L. Qu and T. M. Ko, "Studies of dielectric characteristics and surface energies of spin-coated polyimide films", J. Appl. Polym. Sci., 82, 1642 (2001).
  • M. K. Ghosh and K. L. Mittal, "Polyimide: Synthesis, Characterization and Applications", Springer US (1984).
  • J. A. Kreuz and J. R. Edman, "Polyimide Films", Adv. Mater., 10, 1229 (1998).
  • S. Kubota, T. Moriwaki, T. Ando, and A. Fukami, "Preparation of positive photoreactive polyimides and their characterization", J. Appl. Polym. Sci., 33, 1763 (1987).
  • J. Jang, J. Lee, and B.-H. Ahn, "A Study on the Adhesion Properties of BTDA-APAB Polyimide on Aluminum Surfaces", Polym. Korea, 21, 582 (1997).
  • U. J. Park, J. Y. Park, Y. S. Kim, J. H. Ryu, and J. C. Won, "Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate", Polym. Korea, 35, 302 (2011).
  • J. Yu, M. Ree, T. J. Shin, X. Wang, W. Cai, D. Zhou, and K. W. Lee, "Miscibility of polyimide with polymeric primer and its influence on adhesion of polyimide to the primed copper metal: Effect of precursor origin", J. Polym. Sci., Part B: Polym. Phys., 37, 2806 (1999).
  • Q.-H. Lu, M. Li, J. Yin, Z.-K. Zhu, and Z.-G. Wang, "Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence", J. Appl. Polym. Sci., 82, 2739 (2001).
  • H. S. Patel and V. C. Patel, "Polyimides containing s-triazine ring", Eur. Polym. J., 37, 2263 (2001).
  • S. H. Kim, S. H. Cho, N.-E. Lee, H. M. Kim, Y. W. Nam, and Y.-H. Kim, "Adhesion properties of Cu/Cr films on polyimide substrate treated by dielectric barrier discharge plasma", Surf. Coat. Technol., 193(1-3), 101 (2005).
  • M. Strobel, C. S. Lyons, and K. L. Mittal, "Plasma Surface Modification of Polymers: Relevance to Adhesion", VSP, Utrecht, The Netherlands (1994).
  • T. Miyamura and J. Koike, "The effects of Cr oxidation and polyimide degradation on interface adhesion strength in Cu/Cr/polyimide flexible films", Mater. Sci. Eng. A., 445-446, 620-624 (2007).
  • T.-W. Kim, J.-S. Lee, Y.-C. Kim, Y.-C. Joo, and B.-J. Kim, "Bending strain and bending fatigue lifetime of flexible metal electrodes on polymer substrates", Materials, 12(15), 2490 (2019).
  • G. P. Zhang, C. A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft. "Length-scale-controlled fatigue mechanisms in thin copper films", Acta. Mater., 54(11), 3127 (2006).
  • D. Wang, C. A. Volkert, and O. Kraft. "Effect of length scale on fatigue life and damage formation in thin Cu films", Mater. Sci. Eng. A., 493(1-2), 267 (2008).
  • G. P. Zhang, K. H. Sun, B. Zhang, J. Gong, C. Sun, and Z. G Wang, "Tensile and fatigue strength of ultrathin copper films", Mater. Sci. Eng. A., 483-484(15), 387 (2008).
  • S. J. Bull, "Failure modes in scratch adhesion testing", Surf. Coat. Technol., 50(1), 25 (1991)
  • N. Panich and Y. Sun, "Mechanical properties of TiB2-based nanostructured coatings", Surf. Coat. Technol., 198, 14 (2005)
  • C. Y. Kim, J.-H. Song, and K. Park, " Tensile Tests for Copper Thin Foils by Using DIC Method ", Trans. Korean Soc. Mech. Eng. A, 36(12), 1529-1534 (2012).
  • O. Kraft, R. Schwaiger, and P. Wellner, "Fatigue in Thin Films: Lifetime and Damage Formation", Mater. Sci. Eng. A, 319-321, 919 (2001).
  • B.-J. Kim, H.-A.-S. Shin, S.-Y. Jung, T. Cho, O. Kraft, I.-S. Choi, and Y.-C. Joo, "Crack Nucleation during Mechanical Fatigue in Thin Metal Films on Flexible Substrates", Acta Mater., 61(9), 3473 (2013).
  • V. M. Marx, C. Kirchlechner, I. Zizak, M. J. Cordill, and G. Dehm, "Adhesion measurement of a buried Cr interlayer on polyimide", Phil. Mag., 95(16-18), 1982 (2015).
  • H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. P. Chu, J. S.C. Jang, Y. Gao, and P. K. Liaw, "Thin-film metallic glasses for substrate fatigue-property improvements", Thin Solid Films, 561, 2 (2014).
  • G.-D. Sim, Y.-S. Lee, S.-B. Lee, and J. J. Vlassak, "Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films", Mater. Sci. Eng. A., 575, 86 (2013).
  • G.-D. Sim, Y. Hwangbo, H.-H. Kim, S.-B. Lee, and J. J. Vlassak, "Fatigue of polymer-supported Ag thin films", Scr. Mater., 66, 915 (2012).