Search
- Past Issues
- e-Submission
-
KCI Accredited Journals KCI 등재지
KCI Impact Factor 0.54
Editorial Office
- +82-2-538-0962
- +82-2-538-0963
- kmeps@kmeps.or.kr
- http://kmeps.or.kr/
KCI Accredited Journals KCI 등재지
KCI Impact Factor 0.54
Journal of the Microelectronics and Packaging Society 2024;31(1):7-15. Published online: May, 10, 2024
DOI : doi.org/10.6117/kmeps.2024.31.1.007
In the trend of the multi-functionalization, miniaturization, and increased power output trends of flexible and stretchable electronic devices, the development of materials or structures with superior heat transfer characteristics has become a pressing issue. Traditional thermal interface materials (TIM) fail to meet the heat dissipation requirements of flexible and stretchable electronic devices, which must endure rapid bending, twisting, and stretching. To address this challenge, there is a demand for the development of TIM that simultaneously possesses high thermal conductivity and stretchability. This paper examines the research trends of liquid metal, carbon, and ceramic-based stretchable thermal interface materials and explores effective strategies for enhancing their thermal and mechanical properties.
Keywords Thermal interface materials, Flexible and stretchable electronic device, Thermal conductivity, Stretchability, Heat dissipation, Thermal management