2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(2); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(2):78-84. Published online: Jul, 25, 2024

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration

  • Jiwon Heo, Chaewon Seong, and Jun-Seok Ha
    School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea
Corresponding author E-mail: jsha@jnu.ac.kr
Abstract

The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4- modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.

Keywords Electrochemical (EC), CO2 reduction (CO2RR), Carbon monoxide (CO), graphitic carbon nitride (g-C3N4), Au catalyst, porous structure

REFERENCES
  • L. Talbi, I. Bozetine, S. A. Boussaa, K. Benfadel, D. Allam, N. Rahim, Y. O. Mohamed, M. Leitgeb, C. Torki, S. Hocine, F. Boudeffar, A. Manseri, and S. Kaci, Photoelectrochemical properties of Cu2O / PANI / Si-based photocathodes for CO2 conversion”, Emerging Materials Research, 12(1), 78-91 (2023).
  • N. Abas, A. Kalair, and N. Khan, “Review of fossil fuels and future energy technologies”, Futures, 69, 31-49 (2015).
  • S. T. Guo, Z. Y. Tang, Y. W. Du, T. Liu, T. Ouyang, and Z. Q. Liu, “Chlorine anion stabilized Cu2O/ZnO photocathode for selective CO2 reduction to CH4”, Appl. Catal. B Environ., 321, 122035 (2023).
  • C. Zhu, A. Chen, J. Mao, G. Wu, S. Li, X. Dong, G. Li, Z. Jiang, Y. Song, W. Chen, and W. Wei, “Cu–Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products”, Small Structures, 4(5), 1-9 (2023).
  • C. Kim, A. Z. Weber, A. J. King, S. Aloni, F. M. Toma, and A. T. Bell, “Codesign of an integrated metal–insulator–semiconductor photocathode for photoelectrochemical reduction of CO2 to ethylene”, Energy Environ. Sci., 16(7), 2968-2976 (2023).
  • D. L. T. Nguyen, Y. Kim, Y. J. Hwang, and D. H. Won, “Progress in development of electrocatalyst for CO2 conversion to selective CO production”, Carbon Energy, 2(1), 72-98 (2020).
  • P. An, L. Wei, H. Li, B. Yang, K. Liu, J. Fu, H. Li, H. Liu, J. Hu, Y.R. Lu, H. Pan, T.S. Chan, N. Zhang, and M. Liu, “Enhancing CO2 reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles”, J. Mater. Chem. A, 8(31), 15936-15941 (2020).
  • Y.-J. Zhang, V. Sethuraman, R. Michalsky, and A. A. Peterson, “Competition between CO2 Reduction and H2 Evolution on Transition-Metal Electrocatalysts”, ACS Catal., 4(10), 3742–3748 (2014).
  • R. Küngas, “ Review—Electrochemical CO2 Reduction for CO Production: Comparison of Low- and High-Temperature Electrolysis Technologies”, J. Electrochem. Soc., 167(4), 044508 (2020).
  • X. Tan, H. Zhu, C. He, Z. Zhuang, K. Sun, C. Zhang, and C. Chen, “Customizing catalyst surface/interface structures for electrochemical CO2 reduction”, Chem. Sci., 15(12), 4292-4312 (2024).
  • X. Ning, Y. Li, J. Ming, Q. Wang, H. Wang, Y. Cao, F. Peng, Y. Yang, and H. Yu, “Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction”, Chem. Sci., 10(6), 1589-1596 (2019).
  • Y. Yang, J. Chen, Z. Mao, N. An, D. Wang, and B. D. Fahlman, “Ultrathin g-C3N4 nanosheets with an extended visiblelight-responsive range for significant enhancement of photocatalysis”, RSC Adv., 7(4), 2333-2341 (2017).
  • X. Liu, X. Xu, H. Gan, M. Yu, and Y. Huang, “The Effect of Different g-C3N4 Precursor Nature on Its Structural Control and Photocatalytic Degradation Activity”, Catalysts, 13(5), 848 (2023).
  • B. O. Asimeng, I. Karadag, S. Iftekhar, Y. Xu, and J. Czernuszka, “XRD and IR revelation of a unique g-C3N4 phase with effects on collagen/hydroxyapatite bone scaffold pore geometry and stiffness”, SN Appl. Sci., 2(8), 1417 (2020).
  • A. Simaioforidou, Y. Georgiou, A. Bourlinos, and M. Louloudi, “Molecular Mn-catalysts grafted on graphitic carbon nitride (gCN): The behavior of gCN as support matrix in oxidation reactions”, Polyhedron, 153, 41-50 (2018).
  • M. KAVGACI, and H. ESKALEN, “Facile Synthesis and Characterization of gCN, gCN-Zn and gCN-Fe Binary Nanocomposite and Its Application as Photocatalyst for Methylene Blue Degradation”, Sak. Univ. J. Sci., 27(3), 530-541 (2023).
  • S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, and M. AlHada, “Size-dependent XPS spectra of small supported Auclusters”, Surf. Sci., 608, 129-134 (2013).
  • A. Y. Klyushin, T. C. R. Rocha, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “A near ambient pressure XPS study of Au oxidation”, Phys. Chem. Chem. Phys., 16(17), 7881-7886 (2014).
  • M. Benedet, D. Barreca, G. A. Rizzi, C. Maccato, J.-L. Wree, A. Devi, and A. Gasparotto, “Fe2O3-graphitic carbon nitride nanocomposites analyzed by XPS”, Surf. Sci. Spectra, 30(2), (2023).
  • M. Jiang, M. Huang, J. Cong, Y. Yao, W. Sun, and B. Wang, “Enhanced visible-light photocatalytic activity of ZrO2/gCN composite by introducing nitrogen vacancies with H2 plasma treatment”, J. Photochem. Photobiol. A Chem., 448, 115324 (2024).
  • B. A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, “Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices”, J. Phys. Chem. C, 122(1), 194-206 (2018)