2024

Vol.31 No.2

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(2); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(2):85-91. Published online: Jul, 25, 2024

MOCVD Growth and Characterization of Heteroepitaxial Beta-Ga2O3

  • Jeong Soo Chung1 , An-Na Cha3 , Gieop Lee1 , Sea Cho1 , Young-Boo Moon4 , Myungshik Gim4 , Moo Sung Lee1,†, and Jun-Seok Ha1,2,†
    1 Department of Chemical Engineering, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea, 2 Optoelectronics Convergence Research Center, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea, 3 Energy Convergence Core-Facility, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea, 4 UJL Inc. Advanced Institutes of Convergence Technology A1513, Kwangkyo-ro 145, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea
Corresponding author E-mail: moosung@chonnam.ac.kr, jsha@jnu.ac.kr
Abstract

In this study, we investigated a method of growing single crystal β-Ga2O3 thin films on a c-plane sapphire substrate using MOCVD. We confirmed the optimal growth conditions to increase the crystallinity of the β-Ga2O3 thin film and confirmed the effect of the ratio between O2 and Ga precursors on crystal growth on the crystallinity of the thin film. The growth temperature range was 600~1100℃, and crystallinity was analyzed when the O2/TMGa ratio was 800~6000. As a result, the highest crystallinity thin film was obtained when the molar ratio between precursors was 2400 at 1100°C. The surface of the thin film was observed with a FE-SEM and XRD ω-scan of the thin film, the FWHM was found to be 1.17° and 1.43° at the (201) and (402) diffraction peaks. The optical band gap energy obtained was 4.78 ~ 4.88 eV, and the films showed a transmittance of over 80% in the near-ultraviolet and visible light regions.

Keywords β-Ga2O3, MOCVD, Heteroepitaxy, Temperature, Single crystal

REFERENCES
  • Masataka, H., et al., “Recent progress in Ga2O3 power devices”, Semicond. Sci. Technol., 31(3), 034001 (2016).
  • X. Guan, U. B. Pal, Y. Jiang, and S. Su, “Clean Metals Production by Solid Oxide Membrane Electrolysis Process”, J. Sustain. Metall., 2, 152-166 (2016).
  • S. Fujita, “Wide-bandgap semiconductor materials: For their full bloom”, Jpn. J. Appl. Phys., 54(3), 030101 (2015).
  • J. B. Varley, B. Shen, and M. Higashiwaki, “Wide bandgap semiconductor materials and devices”, J. Appl. Phys., 131(23), 230401 (2022).
  • H. Jin, L. Qin, L. Zhang, X. Zeng, and R. Yang, “Review of wide band-gap semiconductors technology”, MATEC Web Conf., 40, 01006 (2016).
  • M. Baldini, Z. Galazka, and G. Wagner, “Recent progress in the growth of β-Ga2O3 for power electronics applications”, Mater. Sci. Semicond. Process., 78, 132-146 (2018).
  • M. Higashiwaki, “β-Ga2O3 material properties, growth technologies, and devices: a review”, AAPPS Bull., 32(3), (2022).
  • J. Bae, D.-W. Jeon, J.-H. Park, and J. Kim, “High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3”, J. Vac. Sci. Technol. A, 39(3), 033410 (2021).
  • L. K. Ping, D. D. Berhanuddin, A. K. Mondal, P. S. Menon, and M. A. Mohamed, “Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications”, Chinese J. Phys., 73, 195-212 (2021).
  • P. J. Wellmann, “Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications – SiC, GaN, Ga2O3, and Diamond”, Zeitschrift fur Anorg. und Allg. Chemie, 643(21), 1312-1322 (2017).
  • H. Aida, et al., “Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method”, Jpn. J. Appl. Phys., 47, 8506-8509 (2008).
  • Z. Galazka, “Growth of bulk β-Ga2O3 single crystals by the Czochralski method”, J. Appl. Phys. 131(3), 031103 (2022).
  • T. Harwig, et al., “Electrical Properties of β-Ga2O3 Single Crystals”, Solid State Communications, 18, 1223-1225 (1976).
  • S. Ghose, et al., “Structural and optical properties of β-Ga2O3 thin films grown by plasma-assisted molecular beam epitaxy”, J. Vac. Sci. Technol. B, 34(2), 02L109 (2016).
  • K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “MBE grown Ga2O3 and its power device applications”, J. Cryst. Growth, 378, 591-595 (2013).
  • H. Murakami, et al., “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy”, Appl. Phys. Express, 8(1), 015503 (2015).
  • H. Nishinaka, T. Nagaoka, Y. Kajita, and M. Yoshimoto, “Rapid homoepitaxial growth of (010) β-Ga2O3 thin films via mist chemical vapor deposition”, Mater. Sci. Semicond. Process., 128, 105732 (2021).
  • Z. Feng, A. F. M. A. U. Bhuiyan, M. R. Karim, and H. Zhao, “MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties”, Appl. Phys. Lett., 114(25), 250601 (2019).
  • F. Alema, et al., “Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD”, J. Cryst. Growth, 475, 77-82 (2017).
  • L. Meng, Z. Feng, A. F. M. A. U. Bhuiyan, and H. Zhao, “High-Mobility MOCVD β-Ga2O3 Epitaxy with Fast Growth Rate Using Trimethylgallium”, Cryst. Growth Des., 22(6), 3896–3904 (2022).
  • T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors”, Japanese J. Appl. Physics, 46(11R), 7217-7220 (2007).
  • S. J. Hao, et al., “Growth and characterization of β-Ga2O3 thin films on different substrates”, J. Appl. Phys., 125(10), 105701 (2019).
  • G. Joshi, Y. S. Chauhan, and A. Verma, “Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition”, J. Alloys Compd., 883, 160799 (2021).
  • C. N. Cochran, and L. M. Foster, “Vapor Pressure of Gallium, Stability of Gallium Suboxide Vapor, and Equilibria of Some Reactions Producing Gallium Suboxide Vapor”, J. Electrochem. Soc., 109(2), 144 (1962).
  • T.-S. Chou, et al., “Influencing the morphological stability of MOVPE-grown β-Ga2O3 films by O2/Ga ratio”, Appl. Surf. Sci., 660, 159966 (2024).
  • P. R. Jubu, F. K. Yam, V. M. Igba, and K. P. Beh, “Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3”, J. Solid State Chem., 290, 121576 (2020).