2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(3); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(3):1-9. Published online: Oct, 29, 2024

The Polymer Bonding for Low-temperature Cu Hybrid Bonding

  • Ji Hun Kim and Jong Kyung Park
    Department of Semiconductor Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
Corresponding author E-mail: jkpark1@seoultech.ac.kr
Abstract

This paper addresses the significance of Cu/Polymer Hybrid Bonding technology in the advancement of semiconductor packaging. As the demands of the AI era increase, the semiconductor industry is exploring heterogeneous integration packaging technologies to achieve high I/O counts, low power consumption, efficient heat dissipation, multifunctionality, and miniaturization. The conventional Cu/SiO2 Hybrid Bonding structure faces limitations such as achieving compatibility with CMP processes to attain surface roughness below 1nm and the occurrence of bonding defects due to particles. However, Cu/Polymer Hybrid Bonding technology, utilizing polymers, is gaining attention as a promising alternative to overcome these challenges. This study focuses on the deposition, patterning, and material properties of polymers essential for Cu/Polymer Hybrid Bonding, highlighting the advantages and potential applications of this technology compared to existing methods. Specifically, the use of polymers with low glass transition temperatures (Tg) is discussed for their benefits in low-temperature bonding processes and improved mechanical properties due to their high coefficients of thermal expansion. Furthermore, the study explores surface property modifications of polymers and the enhancement of bonding mechanisms through plasma treatment. This research emphasizes that Cu/Polymer Hybrid Bonding technology can serve as a critical breakthrough in developing high-performance, low-power semiconductor devices within the industry.

Keywords 3D IC Package, Hybrid Bonding, Polymer Dielectric, Cu/Polymer Hybrid Bonding

REFERENCES
  • S. Wang, J. Feng, W. Wang, P. Wu, J. Wen, D. Yang, Y. Huang, R. Tian, S. Wang, Y. Tian, Isothermal Aging and Electromigration Reliability of Cu Pillar Bumps Interconnections in Advanced Packages monitored by In-situ Dynamic Resistance Testing, Journal of Materials Research and Technology, 32 (2024)
  • C. L. Gan, C.-Y. Huang, Interconnect Reliability in Advanced Memory Device Packaging, Journal of Adhesion Science and Technology, (2024)
  • F. Niu, X. Wang, S. Yang, S. Xu, Y. Zhang, T. Suga, C. Wang, Low-temperature Cu/SiO2 hybrid bonding based on Ar/H2 plasma and citric acid cooperative activation for multi-functional chip integration, Applied Surface Science, 648 (2024)
  • B. Lee, O. Zhao, A. Avellán, S. Sadiq, G. Fountain, D. Suwito, G. Gao, L. Mirkarimi, , High-Throughput Characterization of Nanoscale Topography for Hybrid Bonding by Optical Interferometry, (2024)
  • H. Seo, H. S. Park, S. E. Kim, Cu-SiO2 Hybrid Bonding, Journal of the Microelectronics and Packaging Society, 27 (2020)
  • Y.-M. Lin, P.-C. Chang, O.-H. Lee, W.-L. Chiu, T.-C. Chang, H.-H. Chang, C.-H. Lee, B. Huang, M. Dong, D. Tsai, C.-C. Lee, K.-N. Chen, , A hybrid bonding interconnection with a novel low-temperature bonding polymer system, (2022)
  • Y. Kim, S. W. Park, M. S. Jung, J. H. Kim, J. K. Park, A Review on the Bonding Characteristics of SiCN for Low-temperature Cu Hybrid Bonding, Journal of the Microelectronics and Packaging Society, 30 (2023)
  • J. Park, S. Kang, M. E. Kim, N. J. Kim, J. Kim, S. Kim, K. M., Kim , Advanced Cu/Polymer Hybrid Bonding System for Fine‐Pitch 3D Stacking Devices, Adv. Mater. Technol., 8 (2023)
  • C. Jeon, S. Kang, M. E. Kim, J. Park, D. Kim, S. Kim, K. M. Kim, Ru Passivation Layer Enables Cu–Cu Direct Bonding at Low Temperatures with Oxidation Inhibition, ACS Applied Materials & Interfaces, (2024)
  • M. Lee, S. E. Kim, S. Kim, Cu/SiO2 CMP Process for Wafer Level Cu Bonding, Journal of the Microelectronics and Packaging Society, 20 (2013)
  • Z.- J. Hu, X.- P. Qu, H. Lin, R.- D. Huang, X.- C. Ge, M. Li, S.-M. Chen, Y.-H. Zhao, Cu CMP process development and characterization of Cu dishing with 1.8 μm Cu pad and 3.6μm pitch in Cu/SiO2 hybrid bonding, Japanese Journal of Applied Physics, 58 (2019)
  • V. Balan, A. Seignard, D. Scevola, J.-F. Lugand, L. Di Cioccio, M. Rivoire, , CMP process optimization for bonding applications, (2012)
  • O.-H. Lee, W.-L. Chiu, H.-H. Chang, C.-W. Chiang, S.-C. Yu, T.-Y.O. Yang, S.-C. Hsiao, T.-Y. Ko, Y.-M. Lin, C.-H. Wang, W.- C. Lo, C.- H. Lee, C.- A. Tan, M. Fowler, M. Lubber, , Low-Temperature Nanocrystalline Cu/polymer Hybrid Bonding with Tailored CMP Process, (2024)
  • P.- S. He, C.- W. Tu, K.- C. Shie, C.- Y. Liu, H.- Y. Tsai, D.- P. Tran, C. Chen, Chemical mechanical planarization of nanotwinned copper/polyimide for low temperature hybrid bonding, Journal of Electroanalytical Chemistry, 969 (2024)
  • K. K. Gleason, Designing organic and hybrid surfaces and devices with initiated chemical vapor deposition (iCVD), Advanced Materials, 36 (2024)
  • W. E. Tenhaeff, K. K. Gleason, Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD, Adv. Funct.Mater., 18 (2008)
  • K. K. Gleason, Nanoscale control by chemically vapour-deposited polymers, Nature Reviews Physics, 2 (2020)
  • C. Zavvou, J. Cluzel, D. Mariolle, A. Lefevre, V. Jousseaume, Poly(V3D3), an iCVD polymer with promising dielectric properties for high voltage capacitors, Solid-State Electron., 184 (2021)
  • V. Jousseaume, C. Guerin, K. Ichiki, M. Lagrange, B. Altemus, C. Zavvou, M. Veillerot, T. Mourier, J. Faguet, Wafer Scale Insulation of High Aspect Ratio Through-Silicon Vias by iCVD, ACS Applied Materials & Interfaces, 16 (2024)
  • J. Kim, N. K. Hwang, S. K. Hong, M. J. Kim, J. K. Park, Facilitating 3D Multichip Integration through Low-Temperature Polymer-to-Polymer Bonding, ACS Applied Electronic Materials, 6 (2024)
  • C.- H. Lee, C.- A. Tan, M. Fowler, T.- Y. Ko, Y.- M. Lin, W.- L. Chiu, O.-H. Lee, K.-N. Chen, Negative-Tone Photosensitive Polymeric Bonding Material to Enable Room Temperature Prebond for Cu/Polymer Hybrid Bonding, IEEE Trans. Compon., Packag., Manuf. Technol., 13 (2023)
  • H. Sakamoto, T. Teranishi, R. Nagai, R. Itaya, H. Tamate, T. Fukushima, A. Happoya, , Low-Temperature Polymer Hybrid Bonding with Nanoparticulated Cu and Photosensitive Acrylic Adhesive, (2024)
  • Y.-H. Ting, C.-C. Liu, S.-M. Park, H. Jiang, P. F. Nealey, A. E. Wendt, Surface Roughening of Polystyrene and Poly(methyl methacrylate) in Ar/O2 Plasma Etching, Polymers, 2 (2010)
  • H. Mischke, G. Gruetzner, M. Shaw, Plasma etching of polymers like SU8 and BCB, Micromachining and Microfabrication Process Technology VIII, 4979 (2003)
  • N. Padhye, D. M. Parks, B. L. Trout, A. H. Slocum, A New Phenomenon: Sub-T(g), Solid-State, Plasticity-Induced Bonding in Polymers, Sci Rep, 7 (2017)
  • J. Simon, I. Schlapp‐Hackl, J. Sapkota, M. Ristolainen, T. Rosenau, A. Potthast, Towards Tailored Dialdehyde Cellulose Derivatives: A Strategy for Tuning the Glass Transition Temperature, ChemSusChem, 17 (2024)
  • M. Kisiel, B. Mossety-Leszczak, The Effect of Nonterminal Liquid Crystalline Epoxy Resin Structure and Curing Agents on the Glass Transition of Polymer Networks, Polymers, 16 (2024)
  • S. Yang, S. Yoon, S. Kwon, Atomistic molecular dynamics simulation study on thermomechanical properties of poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) dielectric insulator for soft electronics, Journal of Mechanical Science and Technology, 32 (2018)
  • Y. Kayaba, T. Shikama, W. Okada, K. Tamura, Y. Nakamura, Y. Hisamune, R. Furusho, , Demonstration of Low Temperature Cu-Cu Hybrid Bonding using A Novel Thin Polymer, (2024)
  • M. S. Soh, A. U. J. Yap, Influence of curing modes on cross-link density in polymer structures, Journal of dentistry, 32 (2004)
  • D. Abliz, Y. Duan, L. Steuernagel, L. Xie, D. Li, G. Ziegmann, Curing methods for advanced polymer composites-a review, Polymers and Polymer Composites, 21 (2013)
  • P. Song, H. Wang, High‐performance polymeric materials through hydrogen‐bond cross‐linking, Advanced Materials, 32 (2020)
  • S. K. Nemani, R. K. Annavarapu, B. Mohammadian, A. Raiyan, J. Heil, M. A. Haque, A. Abdelaal, H. Sojoudi, Surface modification of polymers: methods and applications, Advanced Materials Interfaces, 5 (2018)
  • H. Shinohara, J. Mizuno, S. Shoji, Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer, Sensors and Actuators A: Physical, 165 (2011)
  • W. Du, J. Tu, M. Qiu, S. Zhou, Y. Luo, W.-L. Ong, J. Zhao, Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity, Int. J. Extrem., 5 (2023)
  • D. D. Burkey, K. K. Gleason, Structure and mechanical properties of thin films deposited from 1, 3, 5-trimethyl-1, 3, 5-trivinylcyclotrisiloxane and water, J. Appl. Phys., 93 (2003)