2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(3); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(3):18-23. Published online: Oct, 29, 2024

Surface Nano-to-Micro Patterning for Rubber Magnet Composite via Extreme Pressure Imprint Lithography

  • Eun Bin Kang, Yu Na Kim, and Woon Ik Park
    Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Busan, 48513, Republic of Korea
Corresponding author E-mail: thane0428@pknu.ac.kr
Abstract

Nanoimprint lithography (NIL) is widely used to form structures ranging from micro to nanoscale due to its advantage of generating high-resolution patterns at a low process cost. However, most NIL processes require the use of imprint resists and external elements such as ultraviolet light or heat, necessitating additional post-processes like etching or metal deposition to pattern the target material. Furthermore, patterning on flexible and/or non-planar films presents significant challenges. This study introduces an extreme pressure imprint lithography (EPIL) process that can form micro- /nano-scale patterns on the surface of a flexible rubber magnet composite (RMC) film at room temperature without an etching process. The EPIL technique can form ultrafine structures over large areas through the plastic deformation of various materials, including metals, polymers, and ceramics. In this study, we demonstrate the process and outcomes of creating a variety of periodic structures with diverse pattern sizes and shapes on the surface of a flexible RMC composed of strontium ferrite and chlorinated polyethylene. The EPIL process, which allows for the precise patterning on the surface of RMC materials, is expected to find broad applications in the production of advanced electromagnetic device components that require fine control and changes in magnetic orientation.

Keywords Imprint lithography, Rubber magnetic composition, Nanostructure, Nanopatterning

REFERENCES
  • M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, Z.-P. Gu, Laser direct write patterning technique of indium tin oxide film, Thin Solid Films, 515 (2007)
  • B. Zhou, W. Huang, W. Fan, H. Zhang, H. Yu, K. Long, Z. Liu, Development of Flexible Rare Earth–Fe–B Rubber Magnets toward Efficient Utilization of Ce, La, and Y Elements, Advanced Engineering Materials, 25 (2023)
  • J. Kruželák, R. Sýkora, R. Dosoudil, I. Hudec, Magnetic composites prepared by incorporation of strontium ferrite into polar and non‐polar rubber matrices, Polymer Composites, 38 (2017)
  • R. Sýkora, V. Babayan, M. Ušáková, J. Kruželák, I. Hudec, Rubber composite materials with the effects of electromagnetic shielding, Polymer Composites, 37 (2016)
  • M. Przybylski, B. Ślusarek, T. Bednarczyk, G. Chmiel, Magnetic and mechanical properties of strontium ferrite and Nd–Fe–B rubber bonded permanent magnets, Acta Phys. Pol. A, 136 (2019)
  • M. H. Makled, T. Matsui, H. Tsuda, H. Mabuchi, M. K. El-Mansy, K. Morii, Magnetic and dynamic mechanical properties of barium ferrite–natural rubber composites, Journal of Materials Processing Technology, 160 (2005)
  • I. Kong, S. H. Ahmad, M. H. Abdullah, D. Hui, A. N. Yusoff, D. Puryanti, Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites, Journal of Magnetism and Magnetic Materials, 322 (2010)
  • D. S. Esteves, M. F. C. Pereira, A. Ribeiro, N. Durães, M. C. Paiva, E. W. Sequeiros, Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning, Polymers, 15 (2023)
  • S. Pattipaka, T. W. Park, Y. M. Bae, Y. Na, K. Chung, K.-I. Park, J. Ryu, W. I. Park, G.-T. Hwang, A nanoscale surface engineered magneto-mechano-triboelectric nanogenerator enabled by reliable pattern replication for self-powered IoT devices, Sustainable Energy & Fuels, 8 (2024)
  • J. Miyazaki, A. Yen, EUV lithography technology for high-volume production of semiconductor devices, Journal of Photopolymer Science and Technology, 32 (2019)
  • M. Modaresialam, Z. Chehadi, T. Bottein, M. Abbarchi, D. Grosso, Nanoimprint lithography processing of inorganic-based materials, Chemistry of Materials, 33 (2021)
  • Y. Wang, J.-A. Pan, H. Wu, D. V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials, ACS nano, 13 (2019)
  • K. D. Ahn, S. H. Oh, Fabrication of Fluorescent Oxygen Sensor Probe Module Based on Planner Lightwave Circuits using UV Imprint Lithography, Journal of the Microelectronics and Packaging Society, 25 (2018)
  • T. W. Park, S. Kim, E. B. Kang, W. I. Park, Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates, Journal of the Microelectronics and Packaging Society, 30 (2023)
  • M. C. McAlpine, R. S. Friedman, C. M. Lieber, Nanoimprint lithography for hybrid plastic electronics, Nano Letters, 3 (2003)
  • M. Meier, C. Nauenheim, S. Gilles, D. Mayer, C. Kügeler, R. Waser, Nanoimprint for future non-volatile memory and logic devices, Microelectronic engineering, 85 (2008)
  • S. H. Lim, B. Radha, J. Y. Chan, M. S. M. Saifullah, G. U. Kulkarni, G. W. Ho, Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography, ACS Applied Materials & Interfaces, 5 (2013)
  • S. Barcelo, Z. Li, Nanoimprint lithography for nanodevice fabrication, Nano Convergence, 3 (2016)
  • J. W. Yi, M. Jeong, A Study on the Surface and Manufacturing Method of Nanostructure for Amplification of Plasmonic Phenomena of Nanoparticles, J. Microelectron. Packag. Soc., 29 (2022)
  • M. J. Haslinger, T. Mitteramskogler, S. Kopp, H. Leichtfried, M. Messerschmidt, M. W. Thesen, M. Mühlberger, Development of a soft UV-NIL step&repeat and lift-off process chain for high speed metal nanomesh fabrication, Nanotechnology, 31 (2020)
  • N. Unno, T. Mäkelä, Thermal nanoimprint lithography—A review of the process, mold fabrication, and material, Nanomaterials, 13 (2023)