2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(3); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(3):42-49. Published online: Oct, 30, 2024

Development and Evaluation of Trimodal Silver Paste for High-Frequency EMI Shielding Films with a Focus on Flexibility, Durability, and Shielding Characteristics

  • Hyun Jin Nam1 , Seonwoo Kim1 , Yubin Kim1 , Se-Hoon Park1 , Moses Gu2 , and Su-Yong Nam3,†
    1 ICT device Packaging Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13509, Republic of Korea, 2 Department of Semiconductor Engineering, Seoul National University of Science and Technology, Gongneung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea, 3 Department of Nanotechnology Engineering, Pukyong National University, Busan 48513, Republic of Korea
Corresponding author E-mail: suynam@pknu.ac.kr
Abstract

In the electromagnetic wave shielding material market, superior shielding performance in the high-frequency range, along with flexibility and durability, has emerged as critical requirements. The need for high-performance EMI (Electromagnetic Interference) films to address electromagnetic wave interference issues is growing, particularly in various industrial sectors such as smart electronic devices, automotive electronic systems, and communication equipment. In this study, a trimodal silver paste was developed and fabricated into an EMI film, with its performance evaluated. The developed silver paste, utilizing a modified epoxy binder, exhibited properties suitable for screen printing processes. The film demonstrated excellent shielding performance, with an average attenuation of -99 dB in the high-frequency range of the 5G spectrum (26.5 GHz to 40 GHz), and a shielding effectiveness of -90.3 dB at 33.6 GHz. Flexibility and durability tests showed that the film maintained its flexibility even at a curvature radius of 1 mm. In the bending cycle test, the resistance increased by approximately 25.5% from 0.51 Ω to 0.64 Ω after 10,000 cycles in the outer bending scenario, while in the inner bending scenario, the resistance decreased by about 3.6%, indicating reduced resistance to compressive stress.

Keywords Electromagnetic interference shielding, Trimodal silver paste, Flexible shielding film, High frequency

REFERENCES
  • D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, Z. M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater., 25 (2015)
  • J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong, S. H. Ko, Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications, ACS Appl. Mater. Interfaces, 9 (2017)
  • F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353 (2016)
  • Y. Bi, M. Ma, Y. Liu, Z. Tong, R. Wang, K. L. Chung, A. Ma, G. Wu, Y. Ma, C. He, P. Liu, L. Hu, Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework, J. Colloid Interface Sci., 600 (2021)
  • C. Li, Z. Li, X. Qi, X. Gong, Y. Chen, Q. Peng, C. Deng, T. Jing, W. Zhong, A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber, J. Colloid Interface Sci., 605 (2022)
  • W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen, G. Ji, Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption, Nano-Micro Lett., 13 (2021)
  • S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang, P. Liu, MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption, J. Mater. Sci. Technol., 88 (2021)
  • Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, J. Tan, Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding, Sci. Rep., 6 (2016)
  • P. Das, S. Ganguly, I. Perelshtein, S. Margel, A. Gedanken, Acoustic green synthesis of graphene-gallium nanoparticles and PEDOT:PSS hybrid coating for textile to mitigate electromagnetic radiation pollution, ACS Appl. Nano Mater., 5 (2022)
  • S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken, S. Margel, Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance, Langmuir, 38 (2022)
  • N. Wu, J. Qiao, J. Liu, W. Du, D. Xu, W. Liu, Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads, Adv. Compos. Hybrid Mater., 1 (2018)
  • N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z. Guo, Achieving superior electromagnetic wave absorbers through the novel metal-organic frame-works derived magnetic porous carbon nanorods, Carbon, 145 (2019)
  • Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding, Carbon, 115 (2017)
  • L. Liang, P. Xu, Y. Wang, Y. Shang, J. Ma, F. Su, Y. Feng, C. He, Y. Wang, C. Liu, Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management, Chem. Eng. J., 395 (2020)
  • R. Asmatulu, P. K. Bollavaram, V. R. Patlolla, I. M. Alarifi, W. S. Khan, Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding, Adv. Compos. Hybrid Mater., 3 (2020)
  • W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma, F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties, ACS Nano, 12 (2018)
  • B. Zhao, C. Zhao, R. Li, S. M. Hamidinejad, C. B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films, ACS Appl. Mater. Interfaces, 9 (2017)
  • D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, X. Gui, Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding, Carbon, 133 (2018)
  • Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang, B. Wei, Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding, Adv. Mater., 29 (2017)
  • G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, A. D. Taylor, Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding, Adv. Funct. Mater., 28 (2018)
  • Y. Zhan, C. Santillo, Y. Meng, M. Lavorgna, Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding, J. Mater. Chem. C, 11 (2023)
  • B. C. Tappan, S. A. Steiner II, E. P. Luther, Nanoporous metal foams, Angew. Chem. Int. Ed., 49 (2010)
  • G. H. Lim, N. Kwon, E. Han, S. Bok, S. E. Lee, B. Lim, Flexible nanoporous silver membranes with unprecedented high effectiveness for electromagnetic interference shielding, J. Ind. Eng. Chem., 93 (2021)
  • N. C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti, H. Wang, Single-walled carbon nanotube/poly (methyl methacrylate) composites for electromagnetic interference shielding, Polym. Eng. Sci., 49 (2009)
  • A. P. Singh, M. Mishra, A. Chandra, S. K. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application, Nanotechnology, 22 (2011)
  • S. H. Lee, S. Yu, F. Shahzad, J. P. Hong, W. N. Kim, C. Park, S. M. Hong, C. M. Koo, Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding, Compos. Sci. Technol., 144 (2017)
  • J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W. G. Zheng, Facile preparation of lightweight microcellular poly- etherimide/graphene composite foams for electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 5 (2013)
  • D. X. Yan, P. G. Ren, H. Pang, Q. Fu, M. B. Yang, Z. M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite, J. Mater. Chem., 22 (2012)
  • J. M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mater. Sci. Eng. R Rep., 74 (2013)
  • Y. Ahn, Y. Jeong, Y. Lee, Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide, ACS Appl. Mater. Interfaces, 4 (2012)
  • S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon, D. H. Kim, Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics, Nat. Nanotechnol., 13 (2018)
  • Z. Chen, S. Ye, I. E. Stewart, B. J. Wiley, Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance, ACS Nano, 8 (2014)
  • A. Sedighi, M. Montazer, N. Hemmatinejad, Copper nanoparticles on bleached cotton fabric: in situ synthesis and characterization, Cellulose, 21 (2014)
  • T. Agcayazi, K. Chatterjee, A. Bozkurt, T. K. Ghosh, Flexible interconnects for electronic textiles, Adv. Mater. Technol., 3 (2018)
  • H. J. Nam, W. Lee, Y. Kim, M. Shin, S. H. Park, J. H. Lee, Rapid curing of printed pattern by UV irradiation and enhanced electrical conductivity in the flexible pattern consisting of Cu@Ag particles by successive photonic sintering, Prog. Org. Coat., 193 (2024)
  • Y. Singh, Electrical resistivity measurements: a review, Int. J. Mod. Phys. Conf. Ser., 22 (2013)
  • H. Xue, J. S. Kyoung, Y. S. Woo, Study on Structural Changes and Electromagnetic Interference Shielding Properties of Ti-based MXene Materials by Heat Treatment, J. Microelectron. Packag. Soc., 30 (2023)
  • S. H. Park, M. Kim, K. S. Kim, Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation, J. Microelectron. Packag. Soc., 28 (2021)
  • J. Hong, J. Kwon, D. Im, J. Ko, C. Y. Nam, H. G. Yang, S. H. Shin, S. M. Hong, S. S. Hwang, H. G. Yoon, A. S. Lee, Best practices for correlating electrical conductivity with broadband EMI shielding in binary filler-based conducting polymer composites, J. Chem. Eng., 455 (2023)
  • S. I. Chung, T. W. Kang, P. K. Kim, T. G. Ha, Y. P. Hong, Highly Transparent Ka-/W-Band Electromagnetic Shielding Films Based on Double-Layered Metal Meshes, ACS Appl. Mater. Interfaces., 15 (2023)
  • H. Lim, J. Oh, J. W. Kim, Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film, J. Microelectron. Packag. Soc., 28 (2021)
  • R. Li, Influence of additional tensile force on the stress and deformation of numerically controlled tube bending, Int. J. Adv. Manuf. Technol., 78 (2015)
  • R. Meya, C. Löbbe, A. E. Tekkaya, Stress state analysis of radial stress superposed bending, Int. J. Precis. Eng. Manuf., 20 (2019)