Search
- Past Issues
- e-Submission
-
KCI Accredited Journals KCI 등재지
KCI Impact Factor 0.54
Editorial Office
- +82-2-538-0962
- +82-2-538-0963
- kmeps@kmeps.or.kr
- http://kmeps.or.kr/
KCI Accredited Journals KCI 등재지
KCI Impact Factor 0.54
Journal of the Microelectronics and Packaging Society 2024;31(3):67-71. Published online: Oct, 30, 2024
DOI : doi.org/10.6117/kmeps.2024.31.3.067
A smart window based on a retarder can transmit or block polarized lights by overlapping two smart windows. In the study, tests were conducted to evaluate the performance of blocking solar heat using smart windows with a size of 300×300 ㎟. Solar heat gain coefficient (SHGC) values were derived through simulation using transmission and reflectance data of the smart windows. As a result of the simulation, it showed that SGHC is effective in blocking solar heat by obtaining values of 0.722 and 0.615 in transmission and blocking mode of smart windows, respectively. The test boxes were fabricated in order to verify the effect of suppressing temperature rise when applying smart windows, the inside temperature in test boxes, which are installed bare glass (reference) and two smart windows with transmission and blocking mode, were measured at 10 minutes-interval for 7 days. As of 1 p.m., the inside temperature of the test boxes with the smart windows applied showed lower temperature compared to the reference. In particular, on the day when the temperature of reference box was the highest at 66.1℃, the temperature of the test box with the smart window applied showed 61.0℃, which was lowered by 5.1℃.
Keywords Smart window, Phase retardation, Retarder, Solar heat, Transmittance-variable