2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(3); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(3):91-98. Published online: Oct, 30, 2024

Driving Forces of Silver Nano-porous Sheet Die Bonding at 145 °C and 175 °C in the Air

  • YehRi Kim1,2, Eunjin Jo1,3, and Dongjin Kim1,†
    1 Advanced Packaging Integration Center , Korea Institute of Industrial Technology (KITECH), Incheon, Republic of Korea, 2 School of Electrical Engineering, Graduate School, Korea University, Seoul, Republic of Korea, 3 School of Materials Science and Engineering, Andong National University, Andong, Republic of Korea
Corresponding author E-mail: dongjinkim@kitech.re.kr
Abstract

This study reveals the feasibility and effectiveness of sinter bonding using an Ag nano-porous sheet at the lowest “theoretically” possible temperature of 145 °C. By uniform pressure of 10 MPa for bonding times of 5 min and 10 min at 145 and 175 °C, we achieved bonding strengths exceeding approximately 20 MPa with a only 5 min of bonding time at 145 °C. In particular, it is interesting to note that in the pressure sintering bonding process at 145 °C, bonding times of 5 and 10 min had no significant difference in strength. Even with a bonding temperature of 175 °C, the difference in average bonding strength between bonding times of 5 min (i.e., 37.6 MPa) and 10 min (i.e., 43.0 MPa) was only 5 MPa. The bonding strength was fundamentally attributed to the thickness of the Ag sintered neck in the Ag sintered layer. Microstructural analysis revealed that as the bonding temperature increased to 175 °C, the fraction of CSL Σ3 boundaries within the Ag sintered layer increased, indicating greater coalescence of Ag particles. This study systematically investigated the mechanism of bonding strength in extremely low-temperature pressure Ag sinter bonding, considering the relationship between microstructures and mechanical behaviors.

Keywords Ag nano-porous sheet, Sheet bonding, Power module, Pressure bonding process, Mechanical strength

REFERENCES
  • D. Mehlig, I. Staffell, M. Stettler, H. ApSimon, Accelerating electric vehicle uptake favours greenhouse gas over air pollutant emissions, Transp. Res. Part D Transp. Environ., 124 (2023)
  • L. F. S. Alves, , SIC power devices in power electronics: An overview, (2017)
  • M. Kanechika, T. Uesugi, T. Kachi, , Advanced SiC and GaN power electronics for automotive systems, (2010)
  • C. Buttay, State of the art of high temperature power electronics, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 176 (2011)
  • A. Khaligh, M. Dantonio, Global Trends in High-Power On-Board Chargers for Electric Vehicles, IEEE Trans. Veh. Technol., 68 (2019)
  • A. Khaligh, S. Dusmez, Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles, IEEE Trans. Veh. Technol., 61 (2012)
  • D. Kim, J. Bang, M.-S. Kim, Advances in Power Semi-conductor Devices for Automotive Power Inverters: SiC and GaN, Packag. Soc., 30 (2023)
  • J.-H. Lee, D.-H. Jung, S.-J. Oh, J.-P. Jung, High Technology and Latest Trends of WBG Power Semiconductors, Packag. Soc., 25 (2018)
  • J. Biela, M. Schweizer, S. Waffler, J. W. Kolar, SiC versus Si - Evaluation of potentials for performance improvement of inverter and DCDC converter systems by SiC power semiconductors, IEEE Trans. Ind. Electron., 58 (2011)
  • C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrate, J. Mater. Sci. Mater. Electron., 29 (2018)
  • J. Li, C. M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles, J. Mater. Process. Technol., 215 (2015)
  • J. Fan, D. Xu, H. Zhang, C. Qian, X. Fan, G. Zhang, Experimental Investigation on the Sintering Kinetics of Nanosilver Particles Used in High-Power Electronic Packaging, IEEE Trans. Components, Packag. Manuf. Technol., 10 (2020)
  • Y. Zhao, Y. Wu, K. Evans, J. Swingler, S. Jones, X. Dai, , Evaluation of Ag sintering die attach for high temperature power module applications, (2014)
  • D. Kim, M. S. Kim, Macroscale and microscale structural mechanisms capable of delaying the fracture of low-tem-perature and rapid pressureless Ag sintered electronics packaging, Mater. Charact., 198 (2023)
  • M.-S. Kim, D. Kim, Ag Sintering Die Attach Technology for Wide-bandgap Power Semiconductor Packaging, Packag. Soc., 30 (2023)
  • S. K. Lin, Nano-volcanic eruption of silver, Sci. Rep., 6 (2016)
  • J. Liu, W. Lv, Y. Mou, C. Chen, Y. Kang, Coalescence behavior of Cu nanoparticles during sintering: Based on atomic scale to macro scale, J. Mater. Res. Technol., 27 (2023)
  • M. R. Mazlan, Necking mechanism under various sintering process parameters – A review, J. Mater. Res. Technol., 23 (2023)
  • W. C. Mallard, A. B. Gardner, Ralph F. Bass, L. M. Slifkin, Self-Diffusion in Silver-Gold Solid Solutions, Phys. Rev., 129 (1963)
  • B. Hallstedt, Thermodynamic assessment of the Silicon - Oxygen system, Calphad, 16 (1992)
  • S. Tsurekawa, H. Watanabe, N. Tamari, T. Watanabe, Improvement of oxidation resistance and oxidation-induced embrittlement by controlling grain boundary microstructure in silicon carbides with different dopants, Mater. Trans., 45 (2004)
  • M. Chiodi, C. Cancellieri, F. Moszner, M. Andrzejczuk, J. Janczak-Rusch, L. P. H. Jeurgens, Massive Ag migration through metal/ceramic nano-multilayers: An interplay between temperature, stress-relaxation and oxygen-enhanced mass transport, J. Mater. Chem. C, 4 (2016)
  • T. Ogura, T. Yagishita, S. Takata, T. Fujimoto, A. Hirose, Bondability of copper joints formed using a mixed paste of Ag2O and CuO for low-temperature sinter bonding, Mater. Trans., 54 (2013)
  • G. Hasson, J. Y. Boos, I. Herbeuval, M. Biscondi, C. Goux, Theoretical and experimental determinations of grain boundary structures and energies: Correlation with various experimental results, Surf. Sci., 31 (1972)