2025

Vol.31 No.4

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(4); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(4):37-46. Published online: Jan, 22, 2025

Recent Research Trends in TGV and Cu-Filling for AI Semiconductor Packaging

  • SeonShin Hui*, CheonSeong Gyeong*, JungJae Pil
    Department of Materials Science and Engineering, University of Seoul, Seoul, Rep. of Korea
Corresponding author E-mail: jpjung@uos.ac.kr
Abstract

AI semiconductors like GPUs, TPUs, and NPUs are crucial for deep learning models, with High Bandwidth Memory (HBM) enhancing performance. The HBM market is projected to grow annually by 46% from 2022 to 2029. To address challenges in semiconductor packaging, such as heat dissipation and signal interference, 3D-IC stacking and glass interposers with Through Glass Via (TGV) technology are emerging as key solutions. TGV improves thermal management, signal integrity, and cost efficiency. This paper discusses recent research trends in TGV manufacturing technologies, such as selective laser etching (SLE), functional layer deposition, and pulse electroplating, which are core technologies for enhancing the reliability and performance of AI semiconductors. SLE technology allows the formation of vias in glass by selectively removing material from a substrate using a laser and an etchant.

Keywords Through Glass Via (TGV), 2.5D Packaging, Etching, Electroplating

REFERENCES
  • H. J. Kim, S. Y. Yoon, H. J. Seo, Research Trends in Domestic and International AI chips (in Kor.), Smart Media Journal, 13 (2024)
  • J. Navarro, Adapting ChatGPT for Real-Time Interactive Machine Translation: Challenges and Solutions, Innovative Computer Sciences Journal, 10 (2024)
  • , , The Export-Import Bank of Korea Innovation Growth Finance Part 1, 2024 Issue Report: Current Status and Outlook of the HBM Market Driven by AI (in Kor.), (2024)
  • A. B. Shorey, R. Lu, , Progress and application of through glass via (TGV) technology, (2016)
  • J. Zhao, F. Qin, Z. Chen, D. Yu, , Thermal Performance of 2.5 D Packaging with the Through Glass Via (TGV) Interposer, (2023)
  • B. K. Wang, Y. A. Chen, A. Shorey, G. Piech, , Thin glass substrates development and integration for through glass vias (TGV) with copper (Cu) interconnects, (2012)
  • , , Through glass vias (TGV) substrate market: Insights and forecast Valuates Reports, (2024)
  • P. Zhang, D. W. Wang, Q. Liu, W. S. Zhao, , A Collaborative Optimization Methodology for 2.5-D Advanced Package Considering Thermal and Power Integrity, (2024)
  • P. Zhang, D. W. Wang, W. S. Zhao, A Thermal and Power Integrity Co-Optimization Framework for 2.5-D Integrated Microsystem, IEEE Transactions on Circuits and Systems I: Regular Papers, (2024)
  • Q. Wang, X. Li, T. Jia, Y. Lin, R. Wang, R. Huang, , ATPlace2. 5D: Analytical Thermal-Aware Chiplet Placement Framework for Large-Scale 2.5 D-IC, (2024)
  • H. Wang, J. Xiang, B. Ma, F. Tian, X. Zhong, X. Jian, S. Chen, H. Chen, X. Yang, Modeling and Characterization of Annealing Effect on the Cu Protrusion and Thermomechanically Behaviors of Through Glass Via, IEEE Transactions on Components, Packaging and Manufacturing Technology, 14 (2024)
  • M. Lueck, A. Huffman, A. Shorey, , Through glass vias (TGV) and aspects of reliability, (2015)
  • H. Hamed, M. Eldiasty, S. M. Seyedi-Sahebari, J. D. Abou-Ziki, Applications, materials, and fabrication of micro glass parts and devices: An overview, Materials Today, 66 (2023)
  • C. Xu, S. Li, Z. Hu, J. Wei, Y. Liu, H. Wang, C. Chen, , A New Method of TGVs for Fast Filling of Metal Paste, (2024)
  • H. Wang, C. Lai, B. Ma, X. Jian, S. Chen, H. Chen, L. Fang, X. Yang, , Failure mechanisms investigation of through glass via (TGV) under thermal annealing and shock, (2024)
  • K. G. Choi, S. W. Kim, J. H. Lee, B. Chu, D. Y. Jeong, Eco‐friendly glass wet etching for MEMS application: A review, J. Am. Ceram. Soc., 107 (2024)
  • J. Liu, C. Xia, X. Ming, G. Dou, C. Yin, Ultrahigh aspect ratio through glass vias perforation utilizing selective laser‐induced etching with nanochannels, Adv. Eng. Mater., 26 (2024)
  • J. H. Kim, B. J. Kim, J. Y. Choi, S. H. Ahn, The Effects of Etchant on via Hole Taper Angle and Selectivity in Selective Laser Etching, Micromachines, 15 (2024)
  • C. Yu, S. Wu, Y. Zhong, R. Xu, T. Yu, J. Zhao, D. Yu, Application of through glass via (TGV) technology for sensors manufacturing and packaging, Sensors, 24 (2023)
  • S. Onitake, K. Inoue, M. Takayama, T. Fujimura, , Direct copper metallization on glass technology, (2017)
  • H. Pandey, K. Pawar, P. Dixit, Localized surface roughening to improve adhesion of electroless seed layer in through-glass vias, Materials Science in Semiconductor Processing, 183 (2024)
  • K. Pawar, H. Pandey, P. Dixit, Continuous electroless seed layer deposition in through-glass-vias by ultrasonic agitation, IEEE Transactions on Components, Packaging and Manufacturing Technology, 14 (2024)
  • S. H. Kee, J. O. Shin, I. H. Jung, W. J. Kim, J. P. Jung, TSV Filling Technology using Cu Electrodeposition, Journal of Welding and Joining, 32 (2014)
  • S. Costello, N. Strusevich, D. Flynn, R. W. Kay, M. K. Patel, C. Bailey, D. Price, M. Bennet, A. C. Jones, M. P. Y. Desmulliez, Electrodeposition of copper into high aspect ratio PCB micro-via using megasonic agitation, Microsystem technologies, 19 (2013)
  • S. Wu, H. Ling, Y. Xie, M. Li, D. Yu, , Synergistic effect of additives on filling of tapered TGV vias by copper electroplating, (2020)
  • T. M. Braun, D. Josell, D. John, T. P. Moffat, Simulation of copper electrodeposition in through-hole vias, J. Electrochem. Soc., 167 (2019)
  • F. Yang, Q. Wang, J. Lee, Y. Song, I. Hwang, S. Yoon, B. Yoo, Silicon dioxide (SiO2) solid blocking layer on through-glass via surface for efficient highly selective copper filling, Surfaces and Interfaces, 55 (2024)
  • P. Ogutu, E. Fey, N. Dimitrov, Superconformal filling of high aspect ratio through glass vias (TGV) for interposer applications using TNBT and NTBC additives, J. Electrochem. Soc., 162 (2015)
  • S. H. Jin, Y. Yoon, Y. G. Jo, S. Y. Lee, H. S. Moon, S. H. Seok, M. J. Kim, J. J. Kim, M. H. Lee, The effects of polyvinylpyrrolidone molecular weight on defect-free filling of through-glass vias (TGVs), J. Ind. Eng. Chem., 96 (2021)
  • D. P. Hong, , A study on Copper Via filling using organic additive and Pulse electroplating (in Kor.), Master Thesis, (2016)
  • L. Hofmann, R. Ecke, S. E. Schulz, T. Gessner, Investigations regarding through silicon via filling for 3D integration by periodic pulse reverse plating with and without additives, Microelectronic Engineering, 88 (2011)
  • Y. H. Chang, Y. M. Lin, C. Y. Lee, P. C. Hsu, C. M. Chen, C. E. Ho, Through glass via (TGV) copper metallization and its microstructure modification, Journal of Materials Research and Technology, 31 (2024)
  • M. Tanaka, S. Kuramochi, T. Tai, Y. Sato, N. Kidera, High frequency characteristics of glass interposer, 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), (2020)
  • F. A. Veer, The strength of glass, a nontransparent value, Heron-English Edition, 52 (2007)
  • R. F. Cook, Strength and sharp contact fracture of silicon, J. Mater. Sci., 41 (2006)
  • Y. Lai, K. Pan, S. B. Park, Thermo-mechanical reliability of glass substrate and Through Glass Vias (TGV): A comprehensive review, Microelectronics Reliability, 161 (2024)
  • K. Pan, C. Okoro, Y. Lai, D. Joshi, S. B. Park, S. Pollard, , A comparative study of the thermomechanical reliability of fully-filled and conformal through-glass via, (2022)