2025

Vol.31 No.4

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(4); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(4):83-88. Published online: Jan, 22, 2025

Electrochemical Evaluation of Anode Type on Fe-Ni Electroplating

  • KangNa Young, LeeJae Ho
    Department of Materials Science and Engineering, Hongik University, 94, Wausan-ro, Mapo-gu, Seoul 04066, Korea
Corresponding author E-mail: jhlee@hongik.ac.kr
Abstract

In this research, Fe-Ni alloy films were electroplated in the cell with different anode, DSA (inert anode) and Ni (soluble anode) to investigate the effect of anode type on the deposits and the baths. The deposits obtained from the Ni anode had higher Ni content than those from the DSA due to the increase in Ni2+ concentration of the baths, caused by Ni anode dissolution. The potential monitoring showed that the oxidation of Fe2+ to Fe3+ was the only reaction of DSA at the current density where Fe-Ni electroplating was conducted. Fe3+ formed at the DSA not only caused decrease in pH but increase in OCP of the baths. On the other hand, the pH and OCP of the bath using Ni anode changed slightly because the anodic potential during electroplating was insufficient to oxidize Fe2+ and form Fe3+.

Keywords Fe-Ni alloy, Electrodeposition, Inert anode, Soluble anode

REFERENCES
  • A. Vicenzo, Structure and Mechanical Properties of Electrodeposited Nanocrystalline Ni-Fe Alloys, J. Electrochem. Soc., 160 (2013)
  • P. A. Farashbaf, B. Bostani, M. Yaghoobi, N.P. Ahmadi, Evaluation of corrosion resistance of electrodeposited nanocrystalline Ni-Fe alloy coatings, Trans. IMF, 95 (2017)
  • Y. Ullal, A. C. Hegde, Electrodeposition and electro-catalytic study of nanocrystalline Ni-Fe alloy, Int. J. Hydrogen Energy, 39 (2014)
  • K. Tomishige, D. Li, M. Tamura, Y. Nakagawa, Nickel–iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties, Catal. Sci. Technol., 7 (2017)
  • C. E. Guillaume, Invar and Its Applications, Nature, 71 (1904)
  • M. van Schifgaarde, I. A. Abrikosov, B. Johansson, Origin of the Invar effect in iron-nickel alloys, Nature, 400 (1999)
  • E. F. Wassermann, Understanding the Invar Effect-Recent Progress, Europhys. News, 22 (1991)
  • M. Inaba, K. Teshima, E. Higashinakagawa, Y. Ohtake, Development of an Invar (Fe-36Ni) Shadow Mask for Color Cathode Ray Tubes, IEEE Trans. Electron Devices, 35 (1988)
  • S. J. Park, S. H. Jo, S. Oh, Y. S. Oh, S. J. Kim, H. W. Lee, S. H. Kang, Y. H. Moon, J. Jung, Microstructure-dependent etching behavior of a partially recrystallized Invar alloy, Mater. Des., 217 (2022)
  • M. Yakout, A. Cadamuro, M. A. Elbestawi, S. C. Veldhuis, The selection of process parameters in additive manufacturing for aerospace alloys, Int. J. Adv. Manuf. Technol., 92 (2017)
  • X. Su, C. Qiang, Influence of pH and bath composition on properties of Ni–Fe alloy films synthesized by electrodeposition, Bull. Mater. Sci., 35 (2012)
  • Q. Lin, E. Hoglund, G. Zangari, Electrodeposition of Fe–Ni alloy on Au (111) substrate: Metastable BCC growth via hydrogen evolution and interactions, Electrochim. Acta, 338 (2020)
  • Y. B. Park, I. G. Kim, The Gain of Low Thermal Expansivity via Phase Transition in Electroformed Invar, Coatings, 8 (2018)
  • V. C. Kieling, Parameters influencing the electrodeposition of Ni-Fe alloys, Surf. Coat. Technol., 96 (1997)
  • S. J. Geng, Y. D. Li, D. Xiang, S. G. Zhou, Electrodeposition of Fe-Ni alloy coating on ferritic stainless steel, Trans. Nonferrous Met. Soc. China, 20 (2010)
  • T. Nagayama, T. Yamamoto, T. Nakamura, Thermal expansions and mechanical properties of electrodeposited Fe-Ni alloys in the Invar composition range, Electrochim. Acta, 205 (2016)
  • D. L. Grimmett, M. Schwartz, K. Nobe, A Comparison of DC and Pulsed Fe‐Ni Alloy Deposits, J. Electrochem. Soc., 140 (1993)
  • A. Brenner, , Electrodeposition of alloys: principles and practice Volume I, (1963)
  • N. Y. Kang, J. H. Lee, Effects of Surface Treatment of Cathode Materials on the Electrodeposition Behavior of Fe-Ni Alloy, J. Microelectron. Packag. Soc., 29 (2023)
  • S.-H. Kim, H.-J. Sohn, Y.-C. Joo, Y.-W. Kim, T.-H. Yim, H.-Y. Lee, T. Kang, Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt.% Ni alloy, Surf. Coat. Technol., 199 (2005)
  • L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu, Graded composition and structure in nanocrystalline Ni–Co alloys for decreasing internal stress and improving tribological properties, J. Phys. D: Appl. Phys., 38 (2005)
  • J. Gong, S. Riemer, A. Morrone, V. Venkatasamy, M. Kautzky, I. Tabakovic, Composition Gradients and Magnetic Properties of 5–100 nm Thin CoNiFe Films Obtained by Electrodeposition, J. Electrochem. Soc., 159 (2012)
  • L. Péter, K. Vad, A. Csik, R. Muñíz, L. Lobo, R. Pereiro, I. Bakonyi, In-depth component distribution in electrodeposited alloys and multilayers, J. Electrochem. Sci. Eng., 8 (2018)
  • I. Tabakovic, J. Gong, S. Riemer, M. Kautzky, Influence of Surface Roughness and Current Efficiency on Composition Gradients of Thin NiFe Films Obtained by Electrodeposition, J. Electrochem. Soc., 162 (2015)
  • Q. Lin, G. Zangari, The evolution of composition and morphology during the initial growth of electrodeposited Ni-Fe films: Comparison between the potentiostatic mode and the pulse-reverse potential mode, Electrochim. Acta, 409 (2022)
  • P. C. Andricacos, C. Arana, J. Tabib, J. Dukovic, L. T. Romankiw, Electrodeposition of Nickel‐Iron alloys: I. Effect of agitation, J. Electrochem. Soc., 136 (1989)
  • R. Abdel-Karim, Y. Reda, M. Muhammed, S. EI-Raghy, M. Shoeib, H. Ahmed, Electrodeposition and characterization of nanocrystalline Ni‐Fe alloys, J. Nanomater., 2011 (2011)
  • A. J. Bard, R. Parsons, J. Jordan, , Standard Potentials in Aqueous Solution, (1985)
  • S. M. Oh, , Electrochemistry (in Korean), (2014)
  • T. E. Brown, H. E. LeMay, B. E. Bursten, C. Murphy, P. Woodward, M. E. Stoltzfus, , Chemistry: The Central Science, (2018)
  • N. Y. Kang, J. H. Lee, Effects of Bath Composition and Current Density on the Electrodeposition Behavior of Fe–Ni Invar Alloy, Electron. Mater. Lett., 19 (2023)