2025

Vol.31 No.4

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 31(4); 2024
  • Article

Review

Journal of the Microelectronics and Packaging Society 2024;31(4):89-95. Published online: Jan, 22, 2025

Effect on Temperature Uniformity by Factor for the Design of Heater Pattern of Electrostatic Chuck

  • KimSang-Hoon1,*, ParkSang-Hyeon1,*, ShinHee-Jun1, ParkJeong-Woo1, YoonJungwoo1, SeoKyoung-Jun1, ImDong Hyeok2, LeeYong-Seok1,†
    1Department of Mechanical Engineering, Myongji University, 116, Myongji-ro, Yongin-si, Gyeonggi-do, 17058, Korea 2DT ENG Inc, 6, Dongtansandan-gil, Hwaseong-si, Gyeonggi-do, 18487, Korea
Corresponding author E-mail: yslee23@mju.ac.kr
Abstract

The use and research of electrostatic chuck, a semiconductor equipment, are actively conducted to equalize the temperature applied to the wafer in the semiconductor manufacturing process. In this study, we propose a model that optimize the surface temperature uniformity through the design of a heater pattern among the parts of the electrostatic chuck. Electrostatic chuck consist of the two zone heater pattern, bonding layer, dielectric layer, plate and cooling path. The process environment assumed RIE and the heater pattern was heated by the applied voltage. According to the finite element method, we analyzed the effect that influence to temperature uniformity about model changed line width and Pigtail of heater pattern, and figured out the change of current density by shape of pattern. Finally, the proposed design model is expected to significantly improve the temperature uniformity of the electrostatic chuck surface and contribute to increasing the consistency of the semiconductor process. This study is expected important basic data for design optimization of ESC.

Keywords Electrostatic chuck, Heater pattern, Semiconductor process, Temperature uniformity, Finite element method

REFERENCES
  • S. Parizi, E. Rackoff, B. Smith, J. Setty, , Characterization of Electrostatic Chuck (ESC) Performance with Changes in Wafer Warpage and Backside Cooling Conditions, (2022)
  • J. Li, Design and regularity research of MOCVD heating plate based on experiments and simulations, Vacuum, 174 (2020)
  • H. K. Oh, S. B. Kang, Y. K. Choi, J. S. Lee, Optimization of rapid thermal processing for uniform temperature distribution on wafer surface, Journal of Mechanical Science and Technology, 23 (2009)
  • M. A. Blauw, P. J. W. van Lankvelt, F. Roozeboom, M. C. M. van de Sanden, W. M. M. Kessels, High-rate anisotropic silicon etching with the expanding thermal plasma technique, Electrochemical and Solid-State Letters, 10 (2007)
  • T. K. Lim, S. H. Rhi, Experimental study on nanofludic heat pipe hot chuck plate in semiconductor wafer baking process, Journal of Mechanical Science and Technology, 24 (2010)
  • H. J. Lee, S. H. Lee, Numerical evaluation on surface temperature uniformity of multi-zone and single-zone ceramic heaters with the electrostatic chuck, Journal of Mechanical Science and Technology, 35 (2021)
  • K. Asano, F. Hatakeyama, K. Yatsuzuka, Fundamental Study of an Electrostatic Chuck for Silicon Wafer Handling, IEEE Transactions on Industry Applications, 38 (2002)
  • Y. Sun, J. Cheng, Y. Lu, Y. Hou, L. Ji, Design space of electrostatic chuck in etching chamber, Journal of Semiconductors, 36 (2015)
  • H. C. Du, S. J. Hong, Temperature Analysis of Electrostatic Chuck for Cryogenic Etch Equipment, Journal of the Semiconductor & Display Technology, 20 (2021)
  • Y. S. Koo, J. H. Kim, C. S. Han, S. J. Hong, Probe card-Type multizone electrostatic chuck inspection system, Automatika : journal for control, measurement, electronics, computing and communications, 64 (2023)
  • J. Lee, Thermal design of hot plate for 300-mm wafer heating in post-exposure bake, Microelectronic Engineering, 88 (2011)
  • M. Klick, M. Bernt, Microscopic approach to an equation for the heat flow between wafer and E-chuck, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 24 (2006)
  • A. Tay, H. T. Chua, W. Yuheng, Y. Geng, H. W. Khuen, Modeling and real-time control of multizone thermal processing system for photoresist processing, Industrial and Engineering Chemistry Research, 52 (2013)
  • T. W. Yoon, M. Choi, S. J. Hong, Thermal and Electrical Analysis of the Electrostatic Chuck for the Etch Equipment, IEEE Transactions on Semiconductor Manufacturing, 36 (2023)
  • C. Liu, Mechanisms underlying temperature uniformity in electrostatic chucks through experimental and simulation methods, Applied Thermal Engineering, 238 (2024)
  • H. J. Lee, S. H. Yeom, K. H. Jang, K. H. Yun, S. H. Lee, , Numerical study of ceramic heater for electrostatic chuck to enhance temperature uniformity, (2020)
  • K. H. Jang, H. J. Lee, S. H. Lee, Evaluation of surface temperature uniformity of multi-zone ceramic heaters with embedded cooling channels for electrostatic chuck, Journal of Mechanical Science and Technology, 36 (2022)
  • D.-H. Jung, J. P. Jung, Aluminum alloys and their joining methods, Microelectron. Packag. Soc., 25 (2018)
  • H.-Y. Nah, A Study about Decrease of Oxygen Permeability with Adding Glass Flakes and (3-Aminopropyl) triethoxysilane on Polyimide Films, Microelectron. Packag. Soc., 31 (2024)
  • B. Jeong, A. Oh, S. Kim, G. Lee, H. Bae, Thermal Design of High Power Semiconductor Using Insulated Metal Substrate, Microelectron. Packag. Soc., 30 (2023)
  • M. Yasuoka, Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification, Surface and Coatings Technology, 218 (2013)
  • S. Saito, F. Soda, R. Dhelika, K. Takahashi, W. Takarada, T. Kikutani, Compliant electrostatic chuck based on hairy microstructure, Smart Materials and Structures, 22 (2013)
  • A. S. Oates, K. P. Cheung, Robert Puers, Livio Baldi, M. V. de Voorde, S. E. van Nooten, , Nanoelectronics: Materials, Devices, Applications, (2017)