2024

Vol.31 No.3

Editorial Office

Review

  • Journal of the Microelectronics and Packaging Society
  • Volume 26(4); 2019
  • Article

Review

Journal of the Microelectronics and Packaging Society 2019;26(4):127-132. Published online: Mar, 23, 2020

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent

  • Chan Lee, Wooje Han, and Hyung-Ho Park
    Department of Materials Science and Engineering, Yonsei University
Corresponding author E-mail: hhpark@yonsei.ac.kr
Abstract

본 연구에서는 liquid-solid solution 합성법을 통해 고유전 페로브스카이트 구조의 barium strontium titanate (Ba0.6Sr0.4TiO3, BSTO)를 합성하여 trimethylsilyl chloride(TMCS)를 silylation agent로 이용한 표면개질을 진행하였 다. Silylation 표면개질을 활용하여 기존 BSTO 나노입자 표면에 있던 -OH 리간드와 TMCS가 갖고 있는 Cl을 반응 시켜 나노입자 표면의 리간드를 -Si, -CH3로 치환하였다. 다양한 TMCS 농도의 변화를 주어 silylation을 진행했고, Fourier-transform infrared spectroscopy 및 X 선 회절 분석, 전계방사 주사전자현미경을 통해 silicon network 및 결 정구조, 나노입자의 크기를 확인하였다. 접촉각 변화 관찰을 통해 가장 많이 silylation된 BSTO 나노입자에서 120.9o 인 소수성 특성을 확인하였다. 나노입자의 silylation을 통해 D.I water 내 BSTO 나노입자의 소수화 정도를 확인하 였다.
In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fouriertransform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9o in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

Keywords Nanoparticle, BSTO, Silylation, Surface modification